cho a^2+b^2/c^2+d^2 = ab/cd .CMR hoac a/b = c/d hoặc a/b = - d/c ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co b^2=ac
\(\Rightarrow\)a/b=b/c
\(\Rightarrow\)a^2/b^2=b^2/c^2=a/b.b/c
\(\Rightarrow\)a^2+b^2/b^2+c^2=a/c (dpcm)
Vậy ......
Ta có: 31+32+33+…+399+3100
=(31+32)+(33+34)+…+(399+3100)
=3.(1+3)+33.(1+3)+…+399.(1+3)
=3.4+33.4+…+399.4
=(3+33+…+399).4 chia hết cho 4
=>31+32+33+…+399+3100 chia hết cho 4
Đặt \(A=3+3^2+3^3+...+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
\(=3\left(1+3\right)+3^{ 3}\left(1+3\right)+...+3^{99}\left(1+3\right)\)
\(=\left(1+3\right)\left(3+3^3+...+3^{99}\right)\)
\(=4\left(3+3^3+...+3^{99}\right)\)
Vì 4 chia hết cho 4 nên \(4\left(3+3^3+...+3^{99}\right)\)
Vậy A chia hết cho 4
từ giả thiết:
b^2=ac;c^2=bd =>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
ta có: \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)
lại có:
\(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\left(2\right)\)
từ 1 và 2=>đpcm
b;c;d thoả mãn b 2 =ac; c - Giúp tôi giải toán - Hỏi đáp, thảo ... nho lik e vao do dug 10000000000000000000%
\(\frac{3^2.3^8}{27^3}=3x=>\frac{3^{10}}{\left(3^3\right)^3}=3x=>\frac{3^{10}}{3^9}=3x=>3^{10-9}=3x=>3x=3=>x=1\)