cho hình vẽ biết AC = AD , BC= BD
cmr:
a) tam giác ABC = tam giác ABD
b) AB là tia phân giác của góc CAD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x/y = 3 => x = 3y
=> x + y = 3y + y = 4y = -6/5
=> y = -6/5 : 4 = -3/10
=> x = -3/10 x 3 = -9/10
Tu x+y=-6/5 va x/y=3 => x/-6=y/5 va x+y=3
Ap dung tinh chat day ti so bang nhau ta co :
x/-6=y/5=x+y/-6+5=3/-11=
xog het bt
Ta co \(\frac{1}{2}x=\frac{x}{2};\frac{2}{3}y=\frac{2y}{3};\frac{3}{4}z=\frac{3z}{4}\)
Va x-y=15\(\Rightarrow x=15+y\)
\(\Rightarrow\frac{15+x}{2}=\frac{2y}{3}\)\(\Leftrightarrow\)\(3\times\left(15+y\right)=2\times2y\)
\(\Rightarrow\)45+3y=4y
\(\Rightarrow\)45=4y-3y
\(\Rightarrow\)y=45
\(\Rightarrow\frac{x}{2}=\frac{90}{3}\)
\(\Rightarrow3x=180\)
\(\Rightarrow y=180:3=60\)
\(\Rightarrow\frac{3z}{4}=\frac{60}{2}\)
\(\Rightarrow6z=240\Rightarrow z=240:6=40\)
Nối EM; DM. Chứng minh được EM = DM vì cùng = BC/2
+) Bài toán phụ : Nếu tam giác ABC có trung tuyến AM thì AM = BC/2
Chứng minh:
Trên tia đối của tia MA lấy D sao cho MA = MD
- Tam giác AMB = DMC ( c - g- c) vì: AM = DM; góc AMB = DMC (đối đỉnh); MB = MC
=> góc ABM = MCD ( 2 góc tương ứng) Mà 2 góc này ở vị trí so le trong nên AB // CD
Ta có: AB | AC nên CD | AC =>góc ACD = 90o
- Tam giác ABC = tam giác CDA (c- g- c) vì: chung cạnh AC; góc BAC = DCA (= 90o) ; AB = CD
=> BC = DA Mà AM = DA/2 nên AM = BC/2 (đpcm)
+) Áp dụng:
Tam giác BEC vuông tại E (do CE | AB ) có EM là trung tuyến nên EM = BC/2
Tam giác BDC vuông tại D (do BD | AC) có DM là trung tuyến nên DM = BC/2
=> EM = DM => tam giác AMD cân tại M
Lại có MN là trung tuyến (do N là trung điểm của DE) nên đồng thời là đường cao
=> MN | DE (đpcm)