giải phương trình
2(x - 1) (x + 2) = (x +2) (x + 3)
x^2 + 3x + 2 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^3-7x^2=3x^2-12x\)
\(\Leftrightarrow x^3-10x^2+12x=0\)
\(\Leftrightarrow x\left(x^2-10x+12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-10x+12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-5\right)^2=13\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x-5=\pm\sqrt{13}\end{cases}}\)
\(\Rightarrow x\in\left\{0;5-\sqrt{13};5+\sqrt{13}\right\}\)
\(x^3-7x^2=3x^2-12x\)
\(\Leftrightarrow x^3-7x^2-3x^2+12x=0\)
\(\Leftrightarrow x^3-10x^2+12x=0\)
\(\Leftrightarrow x\left(x^2-10x+12\right)=0\Leftrightarrow x=0\)
\(x\left(x-3\right)+5x=x^2-8\)
\(\Leftrightarrow x^2-3x+5x=x^2-8\)
\(\Leftrightarrow2x=-8\)
\(\Leftrightarrow x=-4\)
\(x\left(x-3\right)+5x=x^2-8\)
\(\Leftrightarrow x^2-3x+5x=x^2-8\)
\(\Leftrightarrow x^2+2x-x^2+8=0\Leftrightarrow2x+8=0\)
\(\Leftrightarrow2\left(x+4\right)=0\Leftrightarrow x=-4\)
\(a)\)\(\frac{3.\left(x-11\right)}{4}=\frac{3x+1}{5}-\frac{2.\left(2x-5\right)}{10}\)
\(\Leftrightarrow5.3.\left(x-11\right)=4.\left(3x+1\right)-2.2.\left(2x-5\right)\)
\(\Leftrightarrow15x-165=12x+4-8x+20\)
\(\Leftrightarrow15x-12x+8x=4+20+165\)
\(\Leftrightarrow11x=189\)
\(\Leftrightarrow x=\frac{189}{11}\)
Vậy phương trình có 1 nghiệm \(x=\frac{189}{11}\)
\(b)\)\(x^3+x^2-12x=0\)
\(\Leftrightarrow x.\left(x^2+x-12\right)=0\)
\(\Leftrightarrow x.\left(x^2+3x-4x-12\right)=0\)
\(\Leftrightarrow x.\left[x.\left(x+3\right)-4.\left(x+3\right)\right]=0\)
\(\Leftrightarrow x.\left(x+3\right).\left(x-4\right)=0\)
\(\Leftrightarrow x=0\)hoặc \(x+3=0\)hoặc \(x-4=0\)
\(\Leftrightarrow x=0\)hoặc \(x=-3\)hoặc \(x=4\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;-3;4\right\}\)
a, \(\frac{3\left(x-11\right)}{4}=\frac{3x+1}{5}-\frac{2\left(2x-5\right)}{10}\)
\(\Leftrightarrow\frac{15\left(x-11\right)}{20}=\frac{12x+4}{20}-\frac{4\left(2x-5\right)}{20}\)
Khử mẫu : \(\Rightarrow15x-165=12x+4-8x+20\)
\(\Leftrightarrow15x-12x+8x=24+165\)
\(\Leftrightarrow11x=198\Leftrightarrow x=\frac{198}{11}\)
b, \(x^3+x^2-12x=0\)
\(\Leftrightarrow x\left(x^2+x-12\right)=0\)
\(\Leftrightarrow x\left(x-3\right)\left(x+4\right)=0\Leftrightarrow x=0;3;-4\)
Ko có thể tích bạn ơi
Nếu cần chu vi thì:
Công thức của chu vi hình tròn là:
\(5x-3^2-4x-7^2=0\)
\(5x-4x-3^2-7^2=0\)
\(5x-4x=3^2+7^2\)
\(x=9+49\)
\(x=58\)
a, 5x-32-4x-72=0
x-(32+72)=0
x-(9+49)=0
x-58=0
x=58
b, 5x-1.2x-1=3x+8x-1
5x-2x-3x-8x=-1+1
-8x=0
x=0
Bài 1:
a) đk: \(x\ne\pm2\)
b) Ta có:
\(A=\left(\frac{1}{2-x}+\frac{3x}{x^2-4}-\frac{2}{2+x}\right)\div\left(\frac{x^2+4}{4-x^2}+1\right)\)
\(A=\left[\frac{1}{2-x}-\frac{3x}{\left(2-x\right)\left(2+x\right)}-\frac{2}{2+x}\right]\div\frac{x^2+4+4-x^2}{\left(2-x\right)\left(2+x\right)}\)
\(A=\frac{2+x-3x-2\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}\div\frac{8}{\left(2-x\right)\left(2+x\right)}\)
\(A=\frac{2-2x-4+2x}{\left(2-x\right)\left(2+x\right)}\cdot\frac{\left(2-x\right)\left(2+x\right)}{8}\)
\(A=\frac{-2}{\left(2-x\right)\left(2+x\right)}\cdot\frac{\left(2-x\right)\left(2+x\right)}{8}=-\frac{1}{4}\)
=> đpcm
Bài 2:
a) đk: \(x\ne\left\{-3;0;3\right\}\)
b) Ta có:
\(B=\left[\frac{3-x}{x+3}\cdot\frac{x^2+3x+9}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right]\div\frac{3x^2}{x+3}\)
\(B=\left[\frac{-x^2-3x-9}{\left(x+3\right)^2}+\frac{x}{x+3}\right]\cdot\frac{x+3}{3x^2}\)
\(B=\frac{-x^2-3x-9+x\left(x+3\right)}{\left(x+3\right)^2}\cdot\frac{x+3}{3x^2}\)
\(B=\frac{-9}{\left(x+3\right)^2}\cdot\frac{x+3}{3x^2}\)
\(B=-\frac{3}{x\left(x+3\right)}\)
c) Khi B = 1/2 thì: \(-\frac{3}{x\left(x+3\right)}=\frac{1}{2}\)
\(\Leftrightarrow x^2+3x=-6\Leftrightarrow x^2+3x+6=0\)
\(\Leftrightarrow\left(x^2+2\cdot\frac{3}{2}\cdot x+\frac{9}{4}\right)+\frac{15}{4}=0\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2=-\frac{15}{4}\left(ktm\right)\)
=x(x+1)+2(x+1)
khi và chỉ khi x+1=0 hoặc x+2=0
suy ra x= -1 hoặc x =-2
2(x-1)(x+2)=(x+2)(x+3)
(2x-2)(x+2)=(x+2)(x+3)
2x2+4x-2x-4=x2+3x+2x+6
2x2+2x-4=x2+5x+6
2x2-x2+2x-5x=6+4
x2-3x=10
x(x-3)=10
\(\Rightarrow\orbr{\begin{cases}x=10\\x=13\end{cases}}\)
Vậy............................................................