Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
`(2x-5)^2022>=0` với mọi x
`(3y-4)^2024>=0` với mọi y
`=>(2x-5)^2022+(3y-4)^2024>=0` với mọi x,y
Mặt khác: `(2x-5)^2022+(3y-4)^2024<=0`
`=>2x-5=0` và `3y-4=0`
`=>x=5/2` và `y=4/3`
\(P+\left(5\cdot\dfrac{5}{2}-2\cdot\dfrac{4}{3}\right)=6\cdot\left(\dfrac{5}{2}\right)^2+9\cdot\dfrac{5}{2}\cdot\dfrac{4}{3}-\left(\dfrac{4}{3}\right)^2\\ =>P+\dfrac{59}{6}=\dfrac{1183}{18}\\ =>P=\dfrac{1183}{18}-\dfrac{59}{6}\\ =>P=\dfrac{503}{9}\)
\(\dfrac{1}{99\cdot97}-\dfrac{1}{97\cdot95}-...-\dfrac{1}{5\cdot3}-\dfrac{1}{3\cdot1}\\ =\dfrac{1}{99\cdot97}-\left(\dfrac{1}{97\cdot95}+...+\dfrac{1}{5\cdot3}+\dfrac{1}{3\cdot1}\right)\\ =\dfrac{1}{99\cdot97}-\left(\dfrac{1}{95}-\dfrac{1}{97}+\dfrac{1}{93}-\dfrac{1}{95}+...+\dfrac{1}{3}-\dfrac{1}{5}+1-\dfrac{1}{3}\right)\\ =\dfrac{1}{99\cdot97}-\left(-\dfrac{1}{97}+1\right)\\ =\dfrac{1}{99}-\dfrac{1}{97}+\dfrac{1}{97}-1\\ =\dfrac{1}{99}-1\\ =-\dfrac{98}{99}\)
\(\dfrac{11}{48}=\dfrac{11.3}{48.3}=\dfrac{33}{144}\)
\(\dfrac{17}{36}=\dfrac{17.4}{36.4}=\dfrac{68}{144}\)
Do \(68>33\Rightarrow\dfrac{68}{144}>\dfrac{33}{144}\Rightarrow\dfrac{17}{36}>\dfrac{11}{48}\)
\(\left(x^2y^2+2x^2y+x^2\right)\left(x^2+2x-2\right)=\left(xy+x\right)^2\left(x^2+2x-2\right)\)
Do \(\left(xy+x\right)^2\) chính phương với mọi x;y nguyên nên biểu thức đã cho chính phương khi \(x^2+2x-2\) là SCP
\(\Rightarrow x^2+2x-2=k^2\)
\(\Rightarrow\left(x+1\right)^2-k^2=3\)
\(\Rightarrow\left(x+1-k\right)\left(x+1+k\right)=3\)
Pt ước số cơ bản, dễ dàng giải ra \(x=\left\{-3;1\right\}\)
Vậy \(\left(x;y\right)=\left(-3;k\right);\left(1;k\right)\) với k là số nguyên bất kì
\(2\left|\dfrac{1}{2}-\dfrac{3}{4}\right|+\sqrt{\dfrac{4}{9}}\\ =2\left|\dfrac{2}{4}-\dfrac{3}{4}\right|+\sqrt{\left(\dfrac{2}{3}\right)^2}\\ =2\left|\dfrac{-1}{4}\right|+\dfrac{2}{3}\\ =2\cdot\dfrac{1}{4}+\dfrac{2}{3}\\ =\dfrac{1}{2}+\dfrac{2}{3}\\ =\dfrac{7}{6}\)
\(2\left|\dfrac{1}{2}-\dfrac{3}{4}\right|+\sqrt{\dfrac{4}{9}}\)
\(=2\left|\dfrac{2}{4}-\dfrac{3}{4}\right|+\sqrt{\left(\dfrac{2}{3}\right)^2}\)
\(=2\left|-\dfrac{1}{4}\right|+\dfrac{2}{3}\)
\(=2\cdot\dfrac{1}{4}+\dfrac{2}{3}\)
\(=\dfrac{1}{2}+\dfrac{2}{3}\)
\(=\dfrac{3}{6}+\dfrac{4}{6}\)
\(=\dfrac{7}{6}\)
a) Ta có:
\(13>12=>\dfrac{13}{40}>\dfrac{12}{40}=>\dfrac{-13}{40}< \dfrac{-12}{40}\)
b) Ta có:
\(\dfrac{-91}{104}=\dfrac{-13}{14}=\dfrac{1}{14}-1< \dfrac{1}{6}-1=\dfrac{-5}{6}\)
c) Ta có:
\(\dfrac{-15}{21}=\dfrac{-5}{7}=1-\dfrac{2}{7}\\ \dfrac{-36}{44}=\dfrac{-9}{11}=1-\dfrac{2}{11}\)
Mà: \(\dfrac{2}{7}>\dfrac{2}{11}=>\dfrac{-2}{7}< \dfrac{-2}{11}=>1-\dfrac{2}{7}< 1-\dfrac{2}{11}=>-\dfrac{15}{21}< \dfrac{-36}{44}\)
d) Ta có:
\(\dfrac{-16}{30}=\dfrac{-8}{15}=\dfrac{7}{15}-1\\ \dfrac{-35}{84}=\dfrac{-5}{12}=\dfrac{7}{12}-1\)
Mà: \(\dfrac{7}{15}< \dfrac{7}{12}=>\dfrac{7}{15}-1< \dfrac{7}{12}-1=>-\dfrac{16}{30}< \dfrac{-35}{84}\)
e) Ta có:
\(\dfrac{-5}{91}=\dfrac{-5\cdot101}{91\cdot101}=\dfrac{-505}{9191}< \dfrac{-501}{9191}\)
f) Ta có:
\(\dfrac{-11}{3^7\cdot7^3}=\dfrac{-11\cdot7}{3^7\cdot7^3\cdot7}=\dfrac{-77}{3^7\cdot7^4}>\dfrac{-78}{3^7\cdot7^4}\)
\(M=x^2-4x+8\\ =\left(x^2-4x+4\right)+4\\ =\left(x-2\right)^2+4\)
Ta có:
`(x-2)^2>=0` với mọi x
`=>M=(x-2)^2+4>=4` với mọi x
Dấu "=" xảy ra: `x-2=0<=>x=2`
Vậy: ...
Ta có:
\(y^3+2y^2+y+4=\left(y+2\right)^3-\left(4y^2+11y+4\right)\)
Do y là số tự nhiên \(\Rightarrow4y^2+11y+4>0\Rightarrow\left(y+2\right)^3>y^3+2y^2+y+4\)
Đồng thời cũng do y tự nhiên \(\Rightarrow2y^2+y+4>0\Rightarrow y^3+2y^2+y+4>y^3\)
\(\Rightarrow y^3< y^3+2y^2+y+4< \left(y+2\right)^3\)
\(\Rightarrow y^3+2y^2+y+4\) là lập phương của 1 số tự nhiên khi và chỉ khi:
\(y^3+2y^2+y+4=\left(y+1\right)^3\)
\(\Leftrightarrow y^2+2y-3=0\Rightarrow y=1\)
\(\Rightarrow x^3=8\Rightarrow x=2\)