K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

TỪ GT =>    \(3\le xy+yz+zx\)

=>    \(P\ge\frac{x^3}{\sqrt{y^2+xy+yz+zx}}+\frac{y^3}{\sqrt{z^2+xy+yz+zx}}+\frac{z^3}{\sqrt{x^2+xy+yz+zx}}\)

=>     \(P\ge\frac{x^3}{\sqrt{\left(x+y\right)\left(y+z\right)}}+\frac{y^3}{\sqrt{\left(z+x\right)\left(z+y\right)}}+\frac{z^3}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

TA ÁP DỤNG BĐT CAUCHY 2 SỐ SẼ ĐƯỢC:

=> \(\hept{\begin{cases}\sqrt{x+y}.\sqrt{y+z}\le\frac{x+2y+z}{2}\\\sqrt{z+x}.\sqrt{z+y}\le\frac{x+y+2z}{2}\\\sqrt{x+y}.\sqrt{x+z}\le\frac{2x+y+z}{2}\end{cases}}\)

=>   \(P\ge\frac{2x^3}{x+2y+z}+\frac{2y^3}{x+y+2z}+\frac{2z^3}{2x+y+z}\)

=>   \(P\ge\frac{2x^4}{x^2+2xy+2xz}+\frac{2y^4}{xy+y^2+2yz}+\frac{2z^4}{2xz+yz+z^2}\)

TA TIẾP TỤC ÁP DỤNG BĐT CAUCHY - SCHWARZ SẼ ĐƯỢC: 

=>   \(P\ge\frac{2\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

TA CÓ 1 BĐT SAU:      \(xy+yz+zx\le x^2+y^2+z^2\)      (*)

=>   \(P\ge\frac{2\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}\)

=>   \(P\ge\frac{2\left(x^2+y^2+z^2\right)^2}{4\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{2}\)

TA LẠI 1 LẦN NỮA SỬ DỤNG BĐT (*) SẼ ĐƯỢC:  

=>   \(P\ge\frac{xy+yz+zx}{2}\ge\frac{3}{2}\left(gt\right)\)

DẤU "=" XẢY RA <=>   \(x=y=z\)

VẬY P MIN \(=\frac{3}{2}\Leftrightarrow x=y=z=1\)

15 tháng 8 2020

Ta có :

\(P\ge\frac{x^3}{\sqrt{y^2+xy+yz+zx}}+\frac{y^3}{\sqrt{z^2+xy+yz+zx}}+\frac{z^3}{\sqrt{z^2+xy+yz+zx}}\)

\(=\frac{x^3}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\frac{y^3}{\sqrt{\left(z+x\right)\left(z+y\right)}}+\frac{z^3}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

\(\ge\frac{2x^3}{x+2y+z}+\frac{2y^3}{x+y+2z}+\frac{2z^3}{2x+y+z}\)\(\ge2.\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+y^2+z^2\right)+3.\left(xy+yz+zx\right)}\ge2.\frac{\left(xy+yz+zx\right)^2}{4.\left(xy+yz+zx\right)}\ge2.\frac{3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

15 tháng 8 2020

a) \(\sqrt{3-\sqrt{5}}=\frac{\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{5-2\sqrt{5}+1}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}=\frac{\sqrt{5}-1}{\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)

b) \(\sqrt{4+\sqrt{7}}=\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{7+2\sqrt{7}+1}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{7}+1}{\sqrt{2}}=\frac{\sqrt{14}+\sqrt{2}}{2}\)

c) \(\sqrt{5+\sqrt{21}}=\frac{\sqrt{10+2\sqrt{21}}}{\sqrt{2}}=\frac{\sqrt{7+2\sqrt{21}+3}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}}{\sqrt{2}}=\frac{\sqrt{7}+\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{14}+\sqrt{6}}{2}\)

15 tháng 8 2020

BĐT CẦN CM 

<=>   \(\frac{xy+yz+zx}{xyz}\ge\frac{9}{x+y+z}\)

<=>   \(\left(xy+yz+zx\right)\left(x+y+z\right)\ge9xyz\)

ÁP DỤNG BĐT CAUCHY 3 SỐ TA ĐƯỢC:

\(\hept{\begin{cases}xy+yz+zx\ge3\sqrt[3]{x^2y^2z^2}\\x+y+z\ge3\sqrt[3]{xyz}\end{cases}}\)

NHÂN 2 BĐT ĐÓ LẠI TA ĐƯỢC:

\(\Rightarrow\left(xy+yz+zx\right)\left(x+y+z\right)\ge3\sqrt[3]{x^2y^2z^2}.3\sqrt[3]{xyz}=9\sqrt[3]{x^3y^3z^3}=9xyz\)

VẬY TA CÓ ĐPCM.

DẤU "=" XẢY RA <=>    \(x=y=z\)

15 tháng 8 2020

Đây là bất đẳng thức Svacxo nhé 

và đây là dạng tổng quát và cách chứng minh 

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Ta có : \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)(*)

\(< =>\left(a^2x+b^2y\right)\left(x+y\right)\ge xy\left(a+b\right)^2\)

\(< =>\left(bx-ay\right)^2\ge0\)*đúng*

Áp dụng liên tiếp BĐT (*) ta có : 

\(\left(\frac{a^2}{x}+\frac{b^2}{y}\right)+\frac{c^2}{z}\ge\frac{\left(a+b\right)^2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)

Vậy ta có điều phải chứng minh

15 tháng 8 2020

BE là tia phân giác của góc B nên \(\frac{AE}{BC}=\frac{AB}{BC}\Rightarrow\frac{AE}{AC}=\frac{AB}{BC+AB}\Rightarrow AE=\frac{bc}{a+c}\)

tương tự \(AE=\frac{bc}{a+b}\) \(\Rightarrow\frac{S_{AEF}}{S}=\frac{AE\cdot AF}{bc}=\frac{bc}{\left(a+c\right)\left(a+b\right)}\)

tương tự \(\frac{S_{BDF}}{S}=\frac{ac}{\left(b+c\right)\left(a+b\right)},\frac{S_{CDE}}{S}=\frac{ab}{\left(a+c\right)\left(c+b\right)}\)

bất đẳng thức cần chứng minh tương đương với \(\frac{S_{AEF}}{S}+\frac{S_{BDF}}{S}+\frac{S_{CDE}}{S}\ge\frac{3}{4}\)

\(\Leftrightarrow\frac{bc}{\left(a+b\right)\left(a+c\right)}+\frac{ca}{\left(b+c\right)\left(b+a\right)}+\frac{ab}{\left(c+a\right)\left(c+b\right)}\ge\frac{3}{4}\)

biến đổi tương đương bất đẳng thức trên ta được \(a^2b+a^2c+b^2c+b^2a+c^2a+c^2b\ge6abc\)

chia 2 vế cho abc ta được \(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge6\)

ta có \(\frac{a}{b}+\frac{b}{a}\ge2\)

áp dụng cho 3 cặp số suy ra điều phải chứng minh

dấu "=" xảy ra khi a=b=c hay tam giác ABC đều

15 tháng 8 2020

ĐKXĐ: x > 0; x \(\ne\)1

M = \(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)

M = \(\frac{\sqrt{x}.\sqrt{x}-1}{2\sqrt{x}}\cdot\frac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)-\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

M = \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}}\cdot\frac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

M = \(\frac{-4x}{2\sqrt{x}}=-2\sqrt{x}\)

M > -6 => \(-2\sqrt{x}+6>0\)

<=> \(-2\left(\sqrt{x}-3\right)>0\) <=> \(\sqrt{x}-3< 0\) <=>  \(x< 9\)

kết hợp với đk => 0 < x < 9 và x khác 1

15 tháng 8 2020

dễ mà bạn :))) gáy tí , sai thì thôi

\(P=\frac{x^3}{\left(1+x\right)\left(1+y\right)}+\frac{y^3}{\left(1+y\right)\left(1+z\right)}+\frac{z^3}{\left(1+z\right)\left(1+x\right)}\)

\(=\frac{x^3\left(1+z\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}+\frac{y^3\left(1+x\right)}{\left(1+y\right)\left(1+x\right)\left(1+z\right)}+\frac{z^3\left(1+y\right)}{\left(1+x\right)\left(1+z\right)\left(1+y\right)}\)

\(=\frac{x^3\left(1+z\right)+y^3\left(1+x\right)+z^3\left(1+y\right)}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{3\sqrt[3]{x^3y^3z^3\left(1+x\right)\left(1+y\right)\left(1+z\right)}}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

đến đây áp dụng BĐT phụ ( 1+a ) ( 1+b ) ( 1+c ) >= 8abc 

EZ :)))

15 tháng 8 2020

nhưng làm thế thì ko bảo toàn đc dấu bất đẳng thức mà

15 tháng 8 2020

a) \(\frac{\sqrt{7-4\sqrt{3}}}{\sqrt{2-\sqrt{3}}}\cdot\sqrt{2+\sqrt{3}}\)

\(=\frac{\sqrt{4-2.2.\sqrt{3}+3}}{\sqrt{2-\sqrt{3}}}\cdot\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{4-2\sqrt{3}}}\cdot\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(=\frac{2-\sqrt{3}}{\sqrt{3}-1}\cdot\left(1+\sqrt{3}\right)\)

\(=\frac{\left(2-\sqrt{3}\right)\left(1+\sqrt{3}\right)^2}{2}\) 

b) \(\sqrt{\frac{3}{20}}+\sqrt{\frac{1}{60}}-2\sqrt{\frac{1}{50}}\)

\(=\sqrt{\frac{1}{10}\cdot\frac{3}{2}}+\sqrt{\frac{1}{10}\cdot\frac{1}{6}}-2\sqrt{\frac{1}{10}\cdot\frac{1}{5}}\)

\(=\sqrt{\frac{1}{10}}\cdot\left(\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{6}}-2\sqrt{\frac{1}{5}}\right)\)

\(=\frac{1}{\sqrt{10}}\cdot\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{6}}{6}-\frac{2\sqrt{5}}{5}\right)\)

\(=\frac{1}{\sqrt{10}}\cdot\left(\frac{15\sqrt{6}+5\sqrt{6}-12\sqrt{5}}{6}\right)\)

\(=\frac{2.\left(5\sqrt{6}-3\sqrt{5}\right)}{3\sqrt{10}}\cdot\)

......

15 tháng 8 2020

a) Áp dụng định lí Py-ta-go vào \(\Delta AHB\) vuông ở \(\widehat{H}\)ta có:

      AB2=AH2+BH2

 => AB=\(\sqrt{16^2+25^2}\)

<=>AB=\(\sqrt{881}\)

  Áp dụng hệ thức 2 vào \(\Delta ABC\)vuông tại \(\widehat{A}\)ta có:

        AH2=BH.CH

<=> 162=25.CH

<=>256=25.CH

  =>CH=\(\frac{256}{25}\)=10,24

  Ta có:BC=BH+CH

     <=>BC=25+\(\frac{256}{25}\)=\(\frac{881}{25}\)=35.24

  Áp dụng định lí Py-ta-go vào \(\Delta ABC\)vuông tại \(\widehat{A}\)ta có:

       BC2=AB2+AC2

<=>AC2=BC2-AB2

  =>AC=\(\sqrt{\left(\sqrt{881}\right)^2-\left(\frac{881}{25}\right)^2}\)=\(-\sqrt{360,8576}\)

b)Áp dụng định lí Py-ta-go vào \(\Delta AHB\)vuông tai \(\widehat{H}\)ta có:

      AB2=AH2+BH2

<=>AH2=AB2-BH2

<=>AH=\(\sqrt{12^2-6^2}\)=\(\sqrt{108}\)

  Áp dụng hệ thức 2 vào \(\Delta ABC\)vuông tai \(\widehat{A}\)ta có:

       AH2=BH.CH

<=>108=36.CH

  =>CH=\(\frac{108}{36}\)=3

 Ta có:BC=BH+CH

   <=> BC=6+3=9

  Áp dụng Py-ta-go vào \(\Delta ABC\)vuông tại \(\widehat{A}\)ta có:

            BC2=AB2+AC2

     <=>AC2=BC2-AB2

      => AC=\(\sqrt{9^2-12^2}\)=\(-\sqrt{63}\)

Nhớ sau mỗi kết quả của phép tính viết "(cùng đơn vị đo)" nhé!

15 tháng 8 2020

\(Q=\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x^3}-\sqrt{y^3}}{x-y}\)

\(Q=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-y\right)-x\sqrt{x}+y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(Q=\frac{x\sqrt{x}-y\sqrt{x}+x\sqrt{y}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(Q=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)

\(Q=\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

15 tháng 8 2020

\(R=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(R=\left[\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right].\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(R=\left(1+\sqrt{a}+a\right).\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)^2.\left(1+\sqrt{a}\right)^2}\)

\(=\left(1+\sqrt{a}\right)^2.\frac{1}{\left(1+\sqrt{a}\right)^2}=1\)

15 tháng 8 2020

X=0

nha

chuc

hoc

tot