1+1= bao nhiêu vậy; 4:3 = bao nhiêu vậy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi đánh giá năng lực
=20000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 Nha
~HT~
=100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
=200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000+10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
Câu 45:
Đặt \(g\left(x\right)=\frac{x}{x^2+x+1}-\frac{m}{3}\)
\(g'\left(x\right)=\left(\frac{x}{x^2+x+1}\right)'=\frac{-x^2+1}{\left(x^2+x+1\right)^2}\)
\(g'\left(x\right)=0\Rightarrow x=\pm1\), \(g'\left(x\right)\)xác định với mọi \(x\inℝ\).
Suy ra để hàm số \(f\left(x\right)=\left|g\left(x\right)\right|\)có \(4\)điểm cực trị thì phương trình \(g\left(x\right)=0\)có hai nghiệm phân biệt khác \(\pm1\).
\(g\left(x\right)=0\Leftrightarrow\frac{x}{x^2+x+1}=\frac{m}{3}\)
\(lim_{x\rightarrow-\infty}\frac{x}{x^2+x+1}=0,lim_{x\rightarrow+\infty}\frac{x}{x^2+x+1}=0\)
\(g\left(-1\right)=-1,g\left(1\right)=\frac{1}{3}\)
Suy ra BBT của hàm \(\frac{x}{x^2+x+1}\).
Từ đó suy ra để phương trình \(\frac{x}{x^2+x+1}\)có hai nghiệm phân biệt thì
\(\orbr{\begin{cases}0< \frac{m}{3}< \frac{1}{3}\\-1< \frac{m}{3}< 0\end{cases}}\Leftrightarrow m\in\left\{-2,-1\right\}\)(vì \(m\)nguyên)
Chọn A.
1+1=2
4:3=1,333333333
tim cho mình nha
1 + 1 = 2 4 : 3 = 4/3