Một hộp đựng bánh làm bằng bìa cứng có dạng hình hộp chữ nhật có chiều dài 3dm chiều rộng 1,5dm và chiều cao là 2dm
a) tính thể tích của hộp đựng bánh đó
b) tính diện tích giấy cần phải làm chiếc hộp đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó ΔBAD=ΔBED
b: Xét ΔBKC có
KE,CA là các đường cao
KE cắt CA tại D
Do đó: D là trực tâm của ΔBKC
=>BD\(\perp\)KC
a: Xét ΔBAD vuông tại A và ΔBMD vuông tại M có
BD chung
\(\widehat{ABD}=\widehat{MBD}\)
Do đó: ΔBAD=ΔBMD
=>BA=BM
Xét ΔBAM có BA=BM và \(\widehat{ABM}=60^0\)
nên ΔBAM đều
b: ta có: ΔBAM đều
=>\(\widehat{BAM}=\widehat{BMA}=60^0\); MA=MB=AB
\(\widehat{MAB}+\widehat{MAC}=\widehat{BAC}\)
=>\(\widehat{MAC}+60^0=90^0\)
=>\(\widehat{MAC}=30^0\)
ΔBAC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}+60^0=90^0\)
=>\(\widehat{ACB}=30^0\)
Xét ΔMAC có \(\widehat{MAC}=\widehat{MCA}\left(=30^0\right)\)
nên ΔMAC cân tại M
=>\(\widehat{AMC}=180^0-2\cdot\widehat{ACM}=120^0\)
a Xét ΔAMC và ΔABN có
AM=AB
\(\widehat{MAC}\) chung
AC=AN
Do đó: ΔAMC=ΔABN
b: Gọi K là giao điểm của CM với BN
Ta có: ΔAMC=ΔABN
=>\(\widehat{AMC}=\widehat{ABN}\)
Xét tứ giác AMBK có \(\widehat{AMH}=\widehat{ABH}\)
nên AMBK là tứ giác nội tiếp
=>\(\widehat{BAM}=\widehat{BKM}=90^0\)
=>BN\(\perp\)CM tại K
Lời giải:
$\frac{2x+1}{-27}=\frac{-3}{2x+1}$
$\Rightarrow (2x+1)^2=(-27)(-3)$
$\Rightarrow (2x+1)^2=81=9^2=(-9)^2$
$\Rightarrow 2x+1=9$ hoặc $2x+1=-9$
$\Rightarrow x=4$ hoặc $x=-5$
Do P(x) chia hết cho x - 1 nên nghiệm của đa thức x - 1 cũng là nghiệm của P(x)
Cho x - 1 = 0
x = 0 + 1
x = 1
⇒ P(1) = a.1² + b.1 + c
= a + b + c
= 0
Vậy S = 0
a: Kẻ DM//AC(M\(\in\)AC)
Ta có: DM//AC
=>\(\widehat{BMD}=\widehat{BCA}\)(hai góc đồng vị)
=>\(\widehat{DBM}=\widehat{DMB}\)
=>DB=DM
=>DM=CE
Xét ΔDIM và ΔEIC có
\(\widehat{DMI}=\widehat{ECI}\)(DM//CE)
DM=CE
\(\widehat{MDI}=\widehat{CEI}\)(DM//CE)
Do đó: ΔDIM=ΔEIC
=>ID=IE
=>I là trung điểm của DE
b: ΔABC cân tại A
mà AH là đường cao
nên AH là phân giác của góc BAC
Xét ΔABO và ΔACO có
AB=AC
\(\widehat{BAO}=\widehat{CAO}\)
AO chung
Do đó: ΔABO=ΔACO
=>\(\widehat{ABO}=\widehat{ACO}=90^0\)
=>OC\(\perp\)AE tại C
Ta có: ΔABO=ΔACO
=>OB=OC
Xét ΔOBD vuông tại B và ΔOCE vuông tại C có
OB=OC
BD=CE
Do đó: ΔOBD=ΔOCE
=>OD=OE
=>ΔODE cân tại O
Ta có: ΔODE cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)DE
a: Xét ΔBAH vuông tại A và ΔBMH vuông tại M có
BH chung
\(\widehat{ABH}=\widehat{MBH}\)
Do đó: ΔBAH=ΔBMH
b: ΔBAH=ΔBMH
=>BA=BM và HA=HM
Ta có: BA=BM
=>B nằm trên đường trung trực của AM(1)
ta có: HA=HM
=>H nằm trên đường trung trực của AM(2)
Từ (1),(2) suy ra BH là đường trung trực của AM
c: Xét ΔBMN vuông tại M và ΔBAC vuông tại A có
BM=BA
\(\widehat{MBN}\) chung
Do đó: ΔBMN=ΔBAC
=>BN=BC
Xét ΔBNC có \(\dfrac{BA}{BN}=\dfrac{BM}{BC}\)
nên AM//NC
d: Xét ΔBNC có
NM,CA là các đường cao
NM cắt CA tại H
Do đó: H là trực tâm của ΔBNC
=>BH\(\perp\)CN
a) Thể tích hộp đựng bánh:
3 × 1,5 × 2 = 9 (dm³)
b) Diện tích xung quanh hộp đựng bánh:
(3 + 1,5) × 2 × 2 = 18 (dm²)
Diện tích đáy:
3 × 1,5 = 4,5 (dm²)
Diện tích giấy cần dùng:
18 + 2 × 4,5 = 27 (dm²)