\(\frac{\left(x^2+2012\right)\sqrt[7]{1-2x}-2012}{x}=\frac{a}{b}\) với \(\frac{a}{b}\)là phân số tối giản, a là số nguyên âm.Tổng a+b bằng ?
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NH
0
28 tháng 4 2020
Kẻ đường cao AH của \(\Delta SAB\)
Ta có: SA\(\perp\)( ABC ) = > SA\(\perp\)BC
mà AB \(\perp\)BC ( tam giác ABC vuông tại B )
=> BC \(\perp\)(SAB ) => BC \(\perp\)AH lại có: AH \(\perp\)SB ( theo cách vẽ đường cao)
=> AH \(\perp\)(SBC )
=> d ( A; (SBC )) = AH
Xét \(\Delta\)SAB vuông tại A có AH là đường cao
=> \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{SA^2}=\frac{1}{a^2}+\frac{1}{4a^2}=\frac{5}{4a^2}\Rightarrow AH=\frac{2\sqrt{5}}{5}\)
Vậy d ( A; (SBC )) = AH = \(\frac{2\sqrt{5}}{5}\)
Thiếu lim đúng không?