cho tam giác ABC cân tại A, có AM là đường trung tuyến, BI là đường cao, AM cắt BI tại H, phân giác góc ACH cắt AH tại O
a) C/m: CH vuông góc với AB tại B'
b) C/m: BB' = IC
c) C/m: B'I // BC
d) Tính góc ABO
e) C/m: tam giác B'HB = tam giác IHC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáy tam giác DA cũng là cạnh hình vuông :
10*2/4=5(gm)
Diện tích hiình vuông :
5*5=25(cm2
a, + Xét tg HBG và tg HCG vuông tại H
Có : HG cạnh chung
Mà : AH là đường cao trong tg cân nên :
AH là đường trung tuyến và là đường fan giác
=> BH=HC (vì AH là đường trung tuyến)
Nên: tg HBG=HCG (ch-cgv)
Vậy : BG=GC ( 2 cạnh tương ứng ) (1)
+ Xét tg BHE và tg HCE vuông tại H
Có : HE cạnh chung
BH=HC
Nên : tg BHE= tg HCE (ch-cgv)
Vậy : BE=EC (2 cạnh tương ứng ) (2)
+Xét tg HGC và tg HCE vuông tại H
Có : HC cạnh chung
HG=HE
Nên : tg HGC=tg HCE
Vậy : GC=ce (2 cạnh tương ứng) (3)
+Xét tg BHG và tg BHE vuông tại H
BH cạnh chung
HG=HE
nên : tg BHG = tg BHE
Vậy : BG=BE ( 2 cạnh tương ứng ) (4)
Từ (1)(2)(3) và (4) suy ra :BG=CG=BE=CE
b,Xét tg ABE và tg ACE
Có : AB= AC ( tg ABC cân tại A)
BE=EC( cmt)
AE cạnh chung
Vậy : tg ABE = tg ACE (ccc)
c, k bt
d, k bt
e, Trong tg GBE có :
BG=BE
Mà trong tam giác có 2 cạnh bằng nhau thì tg đó là tg cân hoặc đều
Nên : tg GBE là tg đều .
Vậy : đpcm
C/m : AD+BD=BC
Xét tg ABD và tg BCD ( cgc)
Mà : trong tg ABD Có :
AD+BD=AB ( vì tam giác này là tg cân , nên cạnh đáy dài )
=> AD+BD=BC(=AB)
Vậy : đpcm