K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

bằng 7

16 tháng 10 2021

bằng một số bằng 0 hoạc lớn hơn 0

Đề thi đánh giá năng lực

16 tháng 10 2021

??????

Cảm ơn

@Cỏ

#Forever

16 tháng 10 2021

chịu mình mới học lớp 6

16 tháng 10 2021

tính VSABCD nhé các bạn ! -_-

16 tháng 10 2021

đế chế mất não,tào tháo ruột thừa

haha hay ko

Thieu_nang_tri_tue à bạn ?_?

@Cỏ

#Forever

16 tháng 10 2021

CAI GI DAY

18 tháng 10 2021

đien con cho

16 tháng 10 2021

a) cách chọn là C94 x C2= 1890

b)chia 3 TH là những tổ không có cả vợ và chồng,những tổ có chồng mà không có vợ ,những tổ có vợ mà không có chồng

cách chọn là  C48 x C2+C38 xC2+ C4xC15 =1610

Kiểm tra học kì II Đề thi học kì II số 1 (40 câu) Các bài giảng Chọn hình thức làm bài (lựa chọn trước khi làm bài)Kiểm tra đáp án trong khi làm bàiKiểm tra đáp án sau khi hoàn thànhCâu hỏi 1 (1 điểm)Cho cấp số nhân (u_n)(un​), biết u_1 = 1u1​=1 và u_4 = 64u4​=64. Công bội của cấp số nhân bằng\pm 4±4.2 \sqrt 222​.44.2121.Câu hỏi 2 (1 điểm)Cho \log_3 6 = alog3​6=a. Khi đó giá trị của \log_3...
Đọc tiếp

Kiểm tra học kì II

 Đề thi học kì II số 1 (40 câu) Các bài giảng
 

Chọn hình thức làm bài (lựa chọn trước khi làm bài)

Kiểm tra đáp án trong khi làm bàiKiểm tra đáp án sau khi hoàn thành
Câu hỏi 1 (1 điểm)

Cho cấp số nhân (u_n)(un), biết u_1 = 1u1=1 và u_4 = 64u4=64. Công bội của cấp số nhân bằng

\pm 4±4.
2 \sqrt 222.
44.
2121.
Câu hỏi 2 (1 điểm)

Cho \log_3 6 = alog36=a. Khi đó giá trị của \log_3 18log318 được tính theo aa là

aa.
a+1a+1.
\dfrac{a}{a+1}a+1a.
a.(a+1)a.(a+1).
Câu hỏi 3 (1 điểm)

Tổng phần thực và phần ảo của số phức z = 1+2iz=1+2i bằng

11.
22.
33.
-11.
Câu hỏi 4 (1 điểm)

Cho hàm số y=f(x)y=f(x) có đồ thị như hình vẽ.

x y O − 1 1 − 1 − 2

Hàm số nghịch biến trên khoảng

\left(-\dfrac{\sqrt{2} }{2} ;-\dfrac{1}{2} \right)(22;21).
\left(\dfrac{1}{2} ;\dfrac{\sqrt{2} }{2} \right)(21;22).
\left(-\dfrac{\sqrt{2} }{2} ;\dfrac{1}{2} \right)(22;21).
\left(-\infty ;1\right)(;1).
Câu hỏi 5 (1 điểm)

Cho \displaystyle\int_{1}^{2}\left[4f\left(x\right)-2x\right]\text{d}x = 112[4f(x)2x]dx=1. Khi đó \displaystyle\int_{1}^{2}f\left(x\right) \text{d}x12f(x)dx bằng

-33.
33.
11.
-11.
Câu hỏi 6 (1 điểm)

Họ nguyên hàm của hàm số g(x)= 5^xg(x)=5x là

5^x\ln 5 +C5xln5+C.
\dfrac {5^{x+1}}{x+1}+Cx+15x+1+C.
5^{x+1} +C5x+1+C.
\dfrac {5^x}{\ln 5} +Cln55x+C.
Câu hỏi 7 (1 điểm)

Trong không gian với hệ trục OxyzOxyz cho điểm I(-5;0;5)I(5;0;5) là trung điểm của đoạn MNMN, biết M(1;-4;7)M(1;4;7). Tọa độ điểm NN là

N(-11;-4;3)N(11;4;3).
N(-2;-2;6)N(2;2;6).
N(-11;4;3)N(11;4;3).
N(-10;4;3)N(10;4;3).
Câu hỏi 8 (1 điểm)

Một nguyên hàm của hàm số f(x) = \sin 3xf(x)=sin3x là

\dfrac13 \cos 3x + \pi31cos3x+π.
-\dfrac13 \cos 3x + \dfrac{\pi}331cos3x+3π.
-3\cos 3x+ \dfrac{\pi}23cos3x+2π.
3 \cos x + 2\pi3cosx+2π.
Câu hỏi 9 (1 điểm)

Trong không gian OxyzOxyz, cho mặt cầu (S)(S)x^2 +y^2 +z^2 -2x+4y+4z+5=0x2+y2+z22x+4y+4z+5=0. Tâm của mặt cầu là

I(1;-2;-2)I(1;2;2).
I(2;4;4)I(2;4;4).
I(2;-4;-4)I(2;4;4).
I(-1;2;2)I(1;2;2).
Câu hỏi 10 (1 điểm)

Đường thẳng nào là tiệm cận ngang của đồ thị hàm số y = \dfrac{1-4x}{2x-1}y=2x114x?

y=4y=4.
y=-2y=2.
y = 2y=2.
y=\dfrac12y=21.
Câu hỏi 11 (1 điểm)

Phần ảo của số phức (1+i)z=3-i(1+i)z=3i bằng

11.
-22.
-ii.
-2i2i.
Câu hỏi 12 (1 điểm)

Biết \displaystyle \int^4_0 f(x)\text{d}x = -104f(x)dx=1. Khi đó I =\displaystyle \int^1_0 f(4x)\text{d}xI=01f(4x)dx bằng

44.
\dfrac 1441.
-\dfrac1441.
-22.
Câu hỏi 13 (1 điểm)

Giá trị PP là tích tất cả các nghiệm của phương trình 3.9^{x} -10.3^{x} +3=03.9x10.3x+3=0 bằng

P=1P=1.
P=9P=9.
P=-1P=1.
P=0P=0.
Câu hỏi 14 (1 điểm)

Trong không gian OxyzOxyz cho điểm A(1 ; -2; 4)A(1;2;4). Khoảng cách từ AA đến trục OxOx bằng

22.
\sqrt{21}21.
\sqrt{11}11.
2\sqrt525.
Câu hỏi 15 (1 điểm)

Cho hàm số y = f(x)y=f(x) có đạo hàm trên đoạn [1;2][1;2] và f(1) = 1f(1)=1f(2)=2f(2)=2. Khi đó \displaystyle \int^2_{1} f'(x)\text{d}x12f(x)dx bằng

33.
-11.
11.
\dfrac7227.
Câu hỏi 16 (1 điểm)

Gọi (H)(H) là hình phẳng giới hạn bởi đồ thị hàm số y = (x-1)^3(x-2)y=(x1)3(x2) và trục hoành. Diện tích hình phẳng (H)(H) bằng

S = -\dfrac1{20}S=201.
S = 0,05S=0,05.
S = -\dfrac15S=51.
S = 0,5S=0,5.
Câu hỏi 17 (1 điểm)

Trong không gian OxyzOxyz cho mặt phẳng (P):(P): 2x - 3y- 9z - 1 = 02x3y9z1=0. Điểm nào sau đây không thuộc mặt phẳng (P)(P)?

A(1;2;5)A(1;2;5).
B\left(0;-1;\dfrac13\right)B(0;1;31).
D\left(\dfrac14;-1;0\right)D(41;1;0).
C\left(2;-1;\dfrac23\right)C(2;1;32).
Câu hỏi 18 (1 điểm)

Trong không gian OxyzOxyz, cho mặt phẳng (P):(P): x-3y+2z-3=0x3y+2z3=0. Xét mặt phẳng (Q):(Q): 2x - 6y + mz -m = 02x6y+mzm=0mm là tham số thực. Giá trị mm để (P)(P) và (Q)(Q) song song là

m = -10m=10.
m = -6m=6.
m = 2m=2.
m = 4m=4.
Câu hỏi 19 (1 điểm)

Cho hàm số y = f(x)y=f(x) liên tục trên \mathbb{R}R có bảng xét dấu của như sau:

Số điểm cực tiểu của hàm số đã cho là

11.
44.
33.
22.
Câu hỏi 20 (1 điểm)

Tập xác định của hàm số y=2^{\sqrt{x}} +\log \left(3-x\right)y=2x+log(3x) là

\left[0;+\infty \right)[0;+).
\left(0;3\right)(0;3).
\left(-\infty ;3\right)(;3).
\left[0;3\right)[0;3).
Câu hỏi 21 (1 điểm)

Nghiệm của phương trình \log_{2} \left(3x-1\right)=0log2(3x1)=0 là

x=\dfrac{1}{3}x=31.
x=\dfrac{2}{3}x=32.
x=2x=2.
x=0x=0.
Câu hỏi 22 (1 điểm)

Cho f(x), g(x)f(x),g(x) là các hàm số có đạo hàm liên tục trên \mathbb{R}Rk \in \mathbb{R}kR. Trong các khẳng định dưới đây khẳng định nào sai?

\displaystyle \int[f (x) - g(x)] \text{d}x = \displaystyle \int f (x)\text{d}x - \displaystyle \int g(x)\text{d}x[f(x)g(x)]dx=f(x)dxg(x)dx.
\displaystyle \int f'(x)\text{d}x = f (x) + Cf(x)dx=f(x)+C.
\displaystyle \int[f (x) + g(x)] \text{d}x = \displaystyle \int f (x)\text{d}x + \displaystyle \int g(x)\text{d}x[f(x)+g(x)]dx=f(x)dx+g(x)dx.
\displaystyle \int kf (x)\text{d}x = k\displaystyle \int f (x)\text{d}xkf(x)dx=kf(x)dx.
Câu hỏi 23 (1 điểm)

Cho lăng trụ tam giác đều có độ dài tất cả các cạnh bằng 3a3a. Thể tích khối lăng trụ đã cho bằng

\dfrac{27\sqrt{3}a^{3}}{2}2273a3.
\dfrac{27\sqrt{3}a^{3}}{4}4273a3.
\dfrac{9\sqrt{3} a^{3}}{4}493a3.
\dfrac{9\sqrt{3} a^{3}}{2}293a3.
Câu hỏi 24 (1 điểm)

Cho số phức zz được biểu diễn bởi điểm M(-1; 3)M(1;3) trên mặt phẳng tọa độ. Môđun của số phức zz bằng

\sqrt 55.
1010.
\sqrt{10}10.
2\sqrt{2}22.
Câu hỏi 25 (1 điểm)

Cho các số phức z_1 = 1-2iz1=12iz_2 = -3+iz2=3+i. Điểm biểu diễn của số phức z=z_1+z_2z=z1+z2 trên mặt phẳng tọa độ là

M(-1;7)M(1;7).
M(2;-5)M(2;5).
M(4;-3)M(4;3).
M(-2;-1)M(2;1).
Câu hỏi 26 (1 điểm)

Trong không gian OxyzOxyz, một vectơ chỉ phương của đường thẳng \Delta:Δ: \dfrac{x}{1} =\dfrac{y}{2} =\dfrac{4-z}{-3}1x=2y=34z là

\overrightarrow{u}=\left(0;0;4\right)u=(0;0;4).
\overrightarrow{u}=\left(1;2;-3\right)u=(1;2;3).
\overrightarrow{u}=\left(1;2;3\right)u=(1;2;3).
\overrightarrow{u}=\left(1;-2;3\right)u=(1;2;3).
Câu hỏi 27 (1 điểm)

Đường cong ở hình vẽ là đồ thị của hàm số nào?

yxO1

y=\log_{\frac12} xy=log21x.
y=\log_{2} xy=log2x.
y=\left(\dfrac12\right)^xy=(21)x.
y=2^xy=2x.
Câu hỏi 28 (1 điểm)

Cho hàm số y=f(x)y=f(x) liên tục trên \mathbb{R}R và có bảng biến thiên như sau

x f ( x ) −∞ − 2 1 3 + + ∞ − 3 1 + ∞ + ∞ 0

Phương trình 2f(x)-3=02f(x)3=0 có bao nhiêu nghiệm?

22.
11.
44.
33.
Câu hỏi 29 (1 điểm)

Đường cong trong hình vẽ là đồ thị của hàm số nào sau đây?

y x O 1 2 − 1 − 2

y=\dfrac{2x-2}{x+1}y=x+12x2.
y=\dfrac{-x+2}{x+2}y=x+2x+2.
y=\dfrac{-2x+2}{x+1}y=x+12x+2.
y=\dfrac{x-2}{x+1}y=x+1x2.
Câu hỏi 30 (1 điểm)

Trong không gian OxyzOxyz, cho điểm M(1;-3;4)M(1;3;4), đường thẳng d:d: \dfrac{x+2}{3} = \dfrac{y-5}{-5} = \dfrac{z-2}{-1}3x+2=5y5=1z2 và mặt phẳng (P):(P): 2x + z - 2 = 02x+z2=0. Phương trình đường thẳng \DeltaΔ qua MM vuông góc với dd và song song với (P)(P) là

\dfrac{x-1}{-1} = \dfrac{y+3}{1} = \dfrac{z-4}{-2}1x1=1y+3=2z4.
\dfrac{x-1}{1} = \dfrac{y+3}{1} = \dfrac{z+4}{2}1x1=1y+3=2z+4.
\dfrac{x-1}{1} = \dfrac{y+3}{-1} = \dfrac{z+4}{2}1x1=1y+3=2z+4.
\dfrac{x-1}{1} = \dfrac{y+3}{1} = \dfrac{z-4}{-2}1x1=1y+3=2z4.
Câu hỏi 31 (1 điểm)

Kí hiệu z_{1}z1z_{2}z2 là hai nghiệm phức của phương trình z^{2} -5z+7=0z25z+7=0. Giá trị của \dfrac{1}{z_{1} } +\dfrac{1}{z_{2} }z11+z21 bằng

\dfrac{-5}{7}75.
\dfrac{-7}{5}57.
\dfrac{7}{5}57.
\dfrac{5}{7}75.
Câu hỏi 32 (1 điểm)

Trong không gian OxyzOxyz, cho mặt phẳng (\alpha):(α): 3x - y + 2z + 4 = 03xy+2z+4=0 và điểm M(3;-1;-2)M(3;1;2). Phương trình mặt phẳng đi qua MM và song song với (\alpha)(α) là

3x+y+2z-6=03x+y+2z6=0.
3x+y+2z+14=03x+y+2z+14=0.
3x-y+2z-6=03xy+2z6=0.
3x-y+2z+6=03xy+2z+6=0.
Câu hỏi 33 (1 điểm)

Trong không gian OxyzOxyz, cho điểm I(-2;1;3)I(2;1;3) và mặt phẳng (P):(P): 2x - y + 2z - 10 = 02xy+2z10=0. Biết rằng (S)(S) có tâm II và cắt (P)(P) theo một đường tròn (C)(C) có chu vi bằng 10\pi10π. Khi đó bán kính rr của mặt cầu (S)(S) bằng

r= 5r=5.
r = 4r=4.
r = \sqrt{34}r=34.
r = \sqrt5r=5.
Câu hỏi 34 (1 điểm)

Tập hợp điểm biểu diễn số phức zz thỏa mãn 2|z-1| = |z + \overline{z} +2|2∣z1∣=z+z+2∣ trên mặt phẳng tọa độ là một

elip.
đường thẳng.
đường tròn.
parabol.
Câu hỏi 35 (1 điểm)

Biết diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 3x^2 + 2mx + m^2 + 1y=3x2+2mx+m2+1, trục hoành, trục tung và đường thẳng x = \sqrt 2x=2 đạt giá trị nhỏ nhất. Mệnh đề nào sau đây đúng?

m \in (-2;1)m(2;1).
m \in(0;3)m(0;3).
m\in(-4;-1)m(4;1).
m\in(3;5)m(3;5).
Câu hỏi 36 (1 điểm)

Một ô tô đang chạy với vận tốc 5454 km/h thì tăng tốc chuyển động nhanh dần đều với gia tốc a(t) = 3t - 8a(t)=3t8 (m/s^22) trong đó tt là khoảng thời gian tính bằng giây. Quãng đường mà ô tô đi được sau 1010s kể từ lúc tăng tốc là

540540 m.
150150 m.
246246 m.
250250 m.
Câu hỏi 37 (1 điểm)

Cho xxyy là các số thực lớn hơn 11 thỏa mãn x^2-6y^2 = xyx26y2=xy. Giá trị M = \dfrac{1 + \log_{12} x + \log_{12} y}{2\log_{12}(x+3y)}M=2log12(x+3y)1+log12x+log12y bằng

\dfrac1221.
11.
\dfrac1441.
\dfrac1331.
Câu hỏi 38 (1 điểm)

Cho số phức zz thỏa mãn |z-1| \ le 1z1∣ le1 và z - \overline{z}zz có phần ảo không âm. Tập hợp các điểm biểu diễn cho số phức zz là một miền phẳng. Diện tích hình phẳng đó bằng

S = \piS=π.
S = 1S=1.
S = \dfrac12 \piS=21π.
S = 2\piS=2π.
Câu hỏi 39 (1 điểm)

Trong không gian OxyzOxyz, cho đường thẳng \Delta :\dfrac{x}{1}=\dfrac{y-1}{1}=\dfrac{z}{1}Δ:1x=1y1=1z và hai điểm A ( 1;2;-5)A(1;2;5)B ( -1;0;2)B(1;0;2). Biết điểm MM thuộc \DeltaΔ sao cho biểu thức T=\left| MA-MB \right|T=MAMB đạt giá trị lớn nhất là T_{\max }Tmax. Khi đó, T_{\max }Tmax bằng

33.
6\sqrt565.
\sqrt{57}57.
2\sqrt626.
Câu hỏi 40 (1 điểm)

Giá trị thực của mm để bất phương trình \log_{5} \left( x^2 + 1\right) \ge \log_{5} \left( mx^2 + 4x + m\right) - 1log5(x2+1)log5(mx2+4x+m)1 nghiệm đúng với mọi x \in \mathbb{R}xR là

m \ge 3m3.
2 < m \le 32<m3.
m < 2m<2.
2 \le m < 32m<3.
0
15 tháng 10 2021

  1 × 12 × 32 + 46 - 67 + 43 + 21 × 47658 ÷ 78 - 65 = 13172

15 tháng 10 2021

kq là : 13172 

( đúng 100% )