ai giải giúp với zos
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Giả sử ta xếp ngẫu nhiên 10 số tự nhiên đó với ký hiệu là $a_1,a_2,a_3,..., a_{10}$
Giả sử không tồn tại 3 số tự nhiên liền kề nhau có tổng lớn hơn hoặc bằng 17, tức là tổng 3 số liền kề bất kỳ luôn $\leq 16$
Khi đó:
$a_1+a_2+a_3\leq 16$
$a_2+a_3+a_4\leq 16$
$a_3+a_4+a_5\leq 16$
..............
$a_8+a_9+a_{10}\leq 16$
$a_9+a_{10}+a_1\leq 16$
$a_{10}+a_1+a_2\leq 16$
Cộng theo vế các BĐT trên lại và thu gọn:
$3(a_1+a_2+...+a_{10})\leq 16.10$
$\Leftrightarrow 3(1+2+3+...+10)\leq 160$
$\Leftrightarrow 165\leq 160$ (vô lý)
Do đó điều giả sử là sai. Tức là tồn tại ít nhất 3 số liền kề có tổng $\geq 17$.
\(\dfrac{\left(x-5\right)}{x+5}-\dfrac{2x}{x-5}=\dfrac{x\left(x+10\right)}{25-x^2}\)
\(\dfrac{\left(x-5\right)}{5+x}+\dfrac{2x}{5-x}=\dfrac{x\left(x+10\right)}{25-x^2}\)
\(\dfrac{\left(x-5\right)^2}{25-x^2}+\dfrac{2x\left(x+5\right)}{25-x^2}=\dfrac{x^2+10x}{25-x^2}\)
\(\dfrac{x^2-10x+25}{25-x^2}+\dfrac{2x^2+10x}{25-x^2}-\dfrac{x^2+10x}{25-x^2}=0\)
\(\dfrac{x^2-10x+25+2x^2+10x-x^2-10x}{25-x^2}=0\)
\(\dfrac{25-10x}{25-x^2}=0\)
\(25-10x=0\)
\(10x=25\)
\(x=\dfrac{25}{10}=\dfrac{5}{2}\)
VD3:
Xét ΔADB vuông tại A và ΔDCA vuông tại D có
\(\widehat{ADB}=\widehat{DCA}\left(=90^0-\widehat{DAC}\right)\)
Do đó: ΔADB~ΔDCA
=>\(\dfrac{AD}{DC}=\dfrac{AB}{AD}\)
=>\(AD^2=AB\cdot CD\)
=>\(CD=\dfrac{20^2}{16}=25\left(cm\right)\)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó:ΔAEB~ΔAFC
=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}=\dfrac{EB}{FC}\)
b: Ta có: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
=>\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{EAF}\) chung
Do đó: ΔAEF~ΔABC
=>\(\widehat{AEF}=\widehat{ABC}\)
a: Xét ΔDBE và ΔDEF có
\(\dfrac{DB}{DE}=\dfrac{DE}{DF}\left(\dfrac{3}{6}=\dfrac{6}{12}=\dfrac{1}{2}\right)\)
\(\widehat{BDE}\) chung
Do đó: ΔDBE~ΔDEF
b: Xét ΔDEF có DA là phân giác
nên \(\dfrac{AE}{AF}=\dfrac{DE}{DF}\)
=>\(AE\cdot DF=AF\cdot DE\)