K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2014

số La Mã không có số 0

Đó là phát minh của người Ấn Độ bạn nhé :D

2 tháng 11 2014

của người la mã mà bạn

 

1 tháng 11 2014

a= 25

(x+5)2

26 tháng 2 2018

a) Tứ giác AEDF có 3 góc vuông nên AEDF là hình chữ nhật.

b) Do D là trung điểm BC nên E, F lần lượt là trung điểm của AB và AC.

Xét tứ giác ADBM có hai đường chéo cắt nhau tại trung điểm mỗi đường nên nó là hình bình hành.

Lại có \(AB\perp MD\) nên ADBM là hình thoi.

Tương tự ADCN cũng là hình thoi.

c) Ta có AB và AC lần lượt là phân giác của góc MAD và NAD 

Vậy nên \(\widehat{MAN}=\widehat{MAD}+\widehat{NAD}=2\left(\widehat{BAD}+\widehat{FAD}\right)=180^o\)

Vậy M, A, N thẳng hàng.

Lại có AM = AD = AN nên A là trung điểm MN.

Hay M, N đối xứng nhau qua A.

d) Để hình chữ nhật AEDF trở thành hình vuông nên AE = AF hay AB = AC.

Vậy để AEDF là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A.

12 tháng 11 2016

a) Tứ giác AEDF là hình chữ nhật 

b) Tam giác ABC có BD = DC

DE//AC  nên AE = BE

ta có DE =EM  ( D đối xứng với M qua AB)Tứ giác ADBM có hai đường chéo cắt nhau tại trung điểm của mỗi dđường nện tứ giác ADBM là hình bình hành.

Tứ giác ADBM  là hinh bình hành có hai đường chéo vuông góc AB vuông góc DM nên tứ giác ADBM là hình thoi

AH
Akai Haruma
Giáo viên
25 tháng 6

Yêu cầu đề bài là gì vậy bạn?

AH
Akai Haruma
Giáo viên
25 tháng 6

Lời giải:
ĐKXĐ: $x\neq \pm 1$

a.

 \(P=\frac{x(x+1)-(x^2+2)}{x+1}:[\frac{x(x-1)}{(x-1)(x+1)}+\frac{x-4}{(x-1)(x+1)}]\\ =\frac{x-2}{x+1}:\frac{x(x-1)+x-4}{(x-1)(x+1)}\\ =\frac{x-2}{x+1}:\frac{x^2-4}{(x-1)(x+1)}\\ =\frac{x-2}{x+1}.\frac{(x+1)(x-1)}{(x-2)(x+2)}=\frac{x-1}{x+2}\)

b.

Để $P=2$ thì $\frac{x-1}{x+2}=2$ ($x\neq \pm 2$)

$\Rightarrow x-1=2(x+2)$

$\Leftrightarrow x=-5$ (tm)

c.

Với $x$ nguyên, để $P$ nguyên thì $x-1\vdots x+2$

$\Rightarrow (x+2)-3\vdots x+2$

$\Rightarrow 3\vdots x+2$

$\Rightarrow x+2\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow x\in \left\{-3; -1; 1; -5\right\}$

Do $x\neq \pm 1$ nên $x\in\left\{-3;-5\right\}$

d.

$P<1\Leftrightarrow \frac{x-1}{x+2}<1$

$\Leftrightarrow \frac{x-1}{x+2}-1<0$

$\Leftrightarrow \frac{-3}{x+2}<0$

$\Leftrightarrow x+2>0\Leftrightarrow x>-2$

Kết hợp đkxđ suy ra $x>-2; x\neq \pm 1; x\neq 2$