Cho hình bình hành ABCD có E,F theo thứ tự là trung điểm của AB và CD.
a, Tứ giác DEBF là hình gì?Vì sao
b, Chứng minh rằng các đường thẳng AC,BD,È cùng cắt nhau tại một điểm.
c,Gọi giao điểm của AC với DE và Bf theo thứ tự là M và N.Chứng minh rằng tứ giác EMFN là hình bình hành.
a) Tứ giác DEBF là hình bình hành vì có 2 cạnh đối // và bằng nhau
b) Vì DEBF là hình bình hành nên EF và BD giao nhau tại trung điểm của BD
Vì ABCD cũng là hình bình hành nên AC và BD cũng giao nhau tại trung điểm của BD
=> AC,BD, EF đồng quy
c) Gọi O là giao điểm của AC và BD
Tam giác ABD có M là trọng tâm=> ME=\(\frac{1}{3}\)DE
Chứng minh tương tự trong tam giác BCD => NF=\(\frac{1}{3}\)BF
mà DE=BF( do DEBF là hình bình hành) => ME=NF và có ME//NF (do DE//BF)=> EMFN là hình bình hành
Mình chỉ trình bày ngắn gọn để bạn hiểu hướng giải bài thôi!!! Khi trình bày vào vở bạn phải trình bày chi tiết ra chứ đừng có trình bày như mình nha!!