Chứng minh n(n+1) .(2n+1)chia hết cho 6 với mọi số tự nhiên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ VT = (7a – 3b)2 – 4c2 = 49a2- 42ab + 9b2 – 4c2
mà 10a2 = 10b2 + c2 nên c2 = 10a2 – 10b2
nên VT = 49a2 – 42ab + 9b2 – 4(10a2 – 10b2)
= 49a2 – 42ab + 9b2 – 40a2 + 40b2
= 9ª2 – 42ab + 49b2 = (3a – 7b)2 = VP
A=x*(x+1)=x2+x
=x2+2x.1/2+1/4-1/4
=(x+1/2)2-1/4\(\ge\)-1/4 ( vì (x+1/2)2\(\ge\)0 )
dấu = xảy ra khi:
x+1/2=0
x=-1/2
vậy GTNN của A là -1/4 tại x=-1/2
mjk trước đó
ta có 4x^2+12x+9=0
<=>(2x)2+2.2x.3+32=0
<=>(2x+3)2=0
<=>2x+3=0
<=>2x=-3
<=>x=-3/2
vậy S={ -3/2}
2.,
A = \(3x^2+2x-1=3\left(x^2+\frac{2}{3}x-\frac{1}{3}\right)=3\left(x^2+\frac{2.x.1}{3}+\frac{1}{9}-\frac{1}{9}-\frac{1}{3}\right)\)
A = \(3\left[\left(x+\frac{1}{3}\right)^2-\frac{4}{9}\right]=3\left(x+\frac{1}{3}\right)^2-\frac{4}{3}\)
VẬy GTNN của A là -4/3 khi x = -1/3 ( GTNN không có GTLN đâu nha)
B = \(-9x^2+3x=-\left(9x^2-3x\right)=-\left(9x^2-2.3x\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)\)
B = \(-\left(3x+\frac{1}{2}\right)^2+\frac{1}{4}\)
VẬy GTLN của B = 1/4 khi 3x + 1/2 = 0
n(n+1)(2n+1)=n(n+1)(n+2+n-1)=n(n+1)(n+2)+n(n+1)(n-1)
Do tích 3 số nguyên liên tiếp chia hết cho 2 và 3 nên tích 3 số nguyên liên tiếp chia hết cho 6
=>n(n+1)(n+2) chia hết cho 6
n(n+1)(n-1) chia hết cho 6
=>n(n+1)(n+2)+n(n+1)(n-1) chia hết cho 6
Vậy n(n+1)(2n+1)