cho 3 số thực dương thỏa mãn \(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}=3\).Chứng minh rằng
\(\frac{27a^2}{c\left(c^2+9a^2\right)}+\frac{b^2}{a\left(4a^2+b^2\right)}+\frac{8c^2}{b\left(9b^2+4c^2\right)}\ge\frac{3}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}2x+y=5m-6\\x-2y=2\end{cases}\Leftrightarrow\hept{\begin{cases}2x+y=5m-6\\2x-4y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}5y=5m-10\\x-2y=2\end{cases}}}\)
\(\left(1\right)\Rightarrow y=\frac{5m-10}{5}=m-2\)
Thay vào phương trình (2) ta được :
\(x-2\left(m-2\right)=2\Leftrightarrow x=2+2m-4=2m-2\)
Vậy hệ phương trình có nghiệm ( x ; y ) = ( 2m - 2 ; m - 2 ) (*)
Thay (*) vào biểu thức trên ta được :
\(2\left(2m-2\right)^2-\left(m-2\right)^2=4\)
\(\Leftrightarrow2\left(4m^2-8m+4\right)-m^2+4m-4=4\)
\(\Leftrightarrow8m^2-16m+8-m^2+4m-4=4\)
\(\Leftrightarrow7m^2-12m=0\Leftrightarrow m\left(7m-12\right)=0\Leftrightarrow m=0;m=\frac{12}{7}\)
\(\hept{\begin{cases}2x+y=5m-6\\2x-4y=4\end{cases}}\)
\(5y=5m-10\)
\(y=m-2\)
\(\hept{\begin{cases}2x+y=5m-6\\2x-4y=4\end{cases}< =>\hept{\begin{cases}2x+\left(m-2\right)=5m-6\\2x-4\left(m-2\right)=4\end{cases}}}\)
\(< =>x-2\left(m-2\right)=2\)
\(x-2m+4=2\)
\(x=2m-2\)
\(< =>2x^2-y^2=4\)
\(2\left(4m^2-8m+4\right)-\left(m^2-4m+4\right)\)
\(8m^2-16m+8-m^2+4m-4-4=0\)
\(7m^2-12m=0\)
\(m\left(7m-12\right)=0\)
\(\orbr{\begin{cases}m=0\\m=\frac{12}{7}\end{cases}}\)
ĐK : x ≥ 0
Xét hiệu M - M2 ta có : M - M2 = M( 1 - M )
\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\left(1-\frac{\sqrt{x}+1}{\sqrt{x}+2}\right)=\frac{\sqrt{x}+1}{\sqrt{x}+2}\left(\frac{\sqrt{x}+2}{\sqrt{x}+2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}\right)\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{1}{\sqrt{x}+2}=\frac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)^2}\)(1)
Dễ chứng minh (1) > 0 ∀ x ≥ 0
=> M - M2 > 0 <=> M > M2
Vậy ...
\(\frac{x}{1-x}+\frac{y}{1-y}=1\Leftrightarrow2x+2y-3xy-1=0\)
Ta có: \(x+y=\frac{1+3xy}{2}\le\frac{1+\frac{3}{4}\left(x+y\right)^2}{2}\Leftrightarrow\frac{3}{8}\left(x+y\right)^2-\left(x+y\right)+\frac{1}{2}\ge0\)
\(\Leftrightarrow x+y\le\frac{2}{3}\)(vì \(0< x,y< 1\))
\(P=x+y+\sqrt{x^2-xy+y^2}=x+y+\sqrt{x^2-xy+y^2-\left(2x+2y-3xy-1\right)}\)
\(=x+y+\sqrt{x^2+y^2+1+2xy-2x-2y}\)
\(=x+y+\sqrt{\left(x+y-1\right)^2}\)
\(=x+y+\left|x+y-1\right|\)
\(=x+y+\left(1-x-y\right)\)
\(=1\)
\(a^2+2b^2+ab=\frac{7}{16}\left(a-b\right)^2+\frac{9}{16}\left(a+\frac{5}{3}b\right)^2\)
\(\Leftrightarrow\sqrt{a^2+2b^2+ab}=\sqrt{\frac{7}{16}\left(a-b\right)^2+\frac{9}{16}\left(a+\frac{5}{3}b\right)^2}\ge\sqrt{\frac{9}{16}\left(a+\frac{5}{3}b\right)^2}=\frac{3}{4}\left(a+\frac{5}{3}b\right)\)
Tương tự \(\sqrt{b^2+2c^2+bc}\ge\frac{3}{4}\left(b+\frac{5}{3}c\right),\sqrt{c^2+2a^2+ac}\ge\frac{3}{4}\left(c+\frac{5}{3}a\right)\)
Cộng lại vế theo vế ta được:
\(\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ca}\ge\frac{3}{4}\left(a+\frac{5}{3}b+b+\frac{5}{3}c+c+\frac{5}{3}a\right)\)
\(=2\left(a+b+c\right)\).
Dấu \(=\)khi \(a=b=c\ge0\).
Còn cách khác nè :
Đặt \(P=\sqrt{a^2+2b^2+ab}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ac}\)
Ta chứng minh \(P\ge2\left(a+b+c\right)\)
\(2P=\sqrt{\left(1+1+2\right)\left(a^2+2b^2+ab\right)}+\sqrt{\left(1+1+2\right)\left(b^2+2c^2+bc\right)}+\sqrt{\left(1+1+2\right)\left(c^2+2a^2+ac\right)}\)
Áp dụng bđt bunyakovsky ta được:
\(2P\ge a+2b+\sqrt{ab}+b+2c+\sqrt{bc}+c+2a+\sqrt{ac}\)
\(=3\left(a+b+c\right)+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\ge4\left(a+b+c\right)\left(AM-GM\right)\)
Suy ra \(P\ge2\left(a+b+c\right)\left(đpcm\right)\)
Ta có: \(\hept{\begin{cases}\left(x-1\right)^2\ge0\left(2\right)\\\left(y-1\right)^2\ge0\left(3\right)\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+1\ge2x\\y^2+1\ge2y\end{cases}\left(\forall x;y\inℝ\right)}}\)
\(\Rightarrow VT_{\left(1\right)}\ge\left(2x+2y+2\right)\left(2x+2y+2\right)\left(x;y\ge0\right)\)
\(\Leftrightarrow VT_{\left(1\right)}\ge4\left(x+y+1\right)^2\)(4)
Đặt \(3x+y+2=a;3y+x+b\Rightarrow a+b=4\left(x+y+1\right)\)
Lại có: \(\left(a-b\right)^2\ge0\left(\forall a;b\inℝ\right)\left(5\right)\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\frac{\left(a+b\right)^2}{4}\ge ab\)
\(\Leftrightarrow\frac{16\left(x+y+1\right)^2}{4}\ge\left(3x+y+2\right)\left(3y+x+2\right)\)
\(\Leftrightarrow4\left(x+y+1\right)^2\ge\left(3x+y+2\right)\left(3y+x+2\right)=VP_{\left(1\right)}\left(6\right)\)
Từ (4) và (6) => \(VT_{\left(1\right)}\ge VP_{\left(1\right)}\)
\(\Rightarrow VT_{\left(1\right)}=VP_{\left(1\right)}\)
Dấu '=' xảy ra đồng thời ở (2), (3), (5)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\\3x+y+2=3y+x+2\end{cases}}\Leftrightarrow x=y=1\)
a, \(x^2+4\left|x-2\right|-x-1=0\)
Với \(x\ge2\)phương trình có dạng :
\(x^2+4x-8-4x-1=0\Leftrightarrow x^2-9=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=3\left(tm\right);x=-3\left(ktm\right)\)
Với \(x< 2\)phương trình có dạng :
\(x^2-4x+8-4x-1=0\Leftrightarrow x^2-7=0\)
\(\Leftrightarrow\left(x-\sqrt{7}\right)\left(x+\sqrt{7}\right)=0\Leftrightarrow x=\sqrt{7}\left(ktm\right);x=-\sqrt{7}\left(tm\right)\)
Vậy tập nghiệm của phương trình là S = { \(-\sqrt{7};3\)}
Má, gõ xong bấm nhầm phát mất hết luôn :((
a) Phương trình có 2 nghiệm: x1=1;x2=3
b)Phương trình có 1 nghiệm: \(x=\frac{\sqrt{21}-5}{4}\)
c) ĐKXĐ: \(\hept{\begin{cases}2x\ne0\\\frac{6x-1}{2x}>0\\6x-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\\frac{6x-1}{2x}>0\\x\ne\frac{1}{6}\end{cases}}}\)(T chưa học giải bất phương trình dạng thương)
Ta đặt \(\sqrt{\frac{6x-1}{2x}}=t\Rightarrow\frac{2x}{6x-1}=\frac{1}{t^2}\)
Pt đã cho tương đương: \(2t=\frac{1}{t^2}+1\Leftrightarrow2t^3-t^2-1=0\)
\(\Leftrightarrow2t^3-2t^2-t^2+t-t+1=0\)
\(\Leftrightarrow\left(2t^2-t-1\right)\left(t-1\right)=0\)
\(\Leftrightarrow\left(t-1\right)^2\left(2t+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=-\frac{1}{2}\left(ktm\right)\end{cases}}\)
Với \(t=1\Leftrightarrow6x-1=2x\Leftrightarrow x=\frac{1}{4}\)
Ta thử lại nghiệm, thay \(x=\frac{1}{4}\)vào pt ban đầu ta đc:
\(2\sqrt{\frac{\frac{6}{4}-1}{\frac{2}{4}}}-\frac{\frac{2}{4}}{\frac{6}{4}-1}-1=0\Leftrightarrow2-1-1=0\Leftrightarrow0=0\)
Vậy pt có 1 nghiệm x=1/4
Đặt \(a=\frac{1}{x};b=\frac{2}{y};c=\frac{3}{z}\)
Theo bài ra, ta có:
x+y+z=3
\(bđt\Leftrightarrow\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)
Áp dụng kĩ thuật Cau-chy ngược dấu ta có:
\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}=\frac{3}{2}\)
Dấu '=' xảy ra <=> a=3;b=2;c=1
*Bài khá giống bạn kia :)
Đặt \(a=\frac{1}{x};b=\frac{2}{y};c=\frac{3}{z}\)
\(\Rightarrow x+y+z=3\)
BĐT cần chứng minh trở thành :
\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{3}{2}\)
Áp dụng kĩ thuật Cô Si ngược dấu ta có :
\(\frac{x^3}{x^2+y^2}+\frac{y^3}{y^2+z^2}+\frac{z^3}{z^2+x^2}\ge\frac{x+y+z}{2}=\frac{3}{2}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow a=3;b=2;c=1\)