Tìm GTNN của biểu thức \(A=\frac{x+1}{x+\sqrt{x}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là câu bđt của chuyên Quảng Nam vừa thi mà:vvv
Ta có: \(xy+yz+zx=xyz\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\left(a,b,c>0\right)\)
Khi đó: \(H=\frac{a}{9b^2+1}+\frac{b}{9c^2+1}+\frac{c}{9a^2+1}\)
\(=\left(a+b+c\right)-\left(\frac{9ab^2}{9b^2+1}+\frac{9bc^2}{9c^2+1}+\frac{9ca^2}{9a^2+1}\right)\)
\(\ge1-\left(\frac{9ab^2}{6b}+\frac{9bc^2}{6c}+\frac{9ca^2}{6a}\right)\)
\(=1-\frac{3}{2}\left(ab+bc+ca\right)\ge1-\frac{3}{2}\cdot\frac{\left(a+b+c\right)^2}{3}=1-\frac{3}{2}\cdot\frac{1}{3}=\frac{1}{2}\)
Dấu "=" xảy ra khi: \(x=y=z=3\)
Vậy Min(H) = 1/2 khi x = y = z = 3
\(\sqrt{32-10\sqrt{7}}-\sqrt{43-12\sqrt{7}}\)
\(=\sqrt{32-2.5\sqrt{7}}-\sqrt{43-2.6\sqrt{7}}\)
\(=\sqrt{25-2.5\sqrt{7}+7}-\sqrt{36-2.6\sqrt{7}+7}\)
\(=\sqrt{\left(5-\sqrt{7}\right)^2}-\sqrt{\left(6-\sqrt{7}\right)^2}\)
\(=5-\sqrt{7}-6+\sqrt{7}=-1\)
b) Ta có: \(hpt\Leftrightarrow\hept{\begin{cases}5x=5m\\2x-y=m-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=m\\2m-y=m-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=m\\y=m+1\end{cases}}}\)
Mà x+y>1 => m+m+1>1 <=> 2m>0 <=>m>0
Vậy m>0 (Tm)
Cứ tưởng phải biến đổi \(9=3\left(p^2-2q\right)=\left(p^2-2q\right)^2\) loay hoay mãi không ra:))
minh nghi vay
Áp dụng BĐT cô si ta có :
ab+bc+ca≥33√ab.bc.ca=3ab+bc+ca≥3ab.bc.ca3=3
⇒BĐT⇒BĐTcần CMCM: 3>9a+b+c⇔a+b+c>33>9a+b+c⇔a+b+c>3
Mà a,b,c > 0 => abc > 0
⇒a+b+c≥33√abc≥3⇒a+b+c≥3abc3≥3
Dấu "=" xảy ra ⇔\hept{a=b=ca2=b2=c2=1⇔a=b=c=1
\(\sqrt{5-2\sqrt{6}}=\sqrt{5-2\sqrt{2.3}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{2.3}+\left(\sqrt{2}\right)^2}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{3}-\sqrt{2}\right|=\sqrt{3}-\sqrt{2}\)vì \(\sqrt{3}-\sqrt{2}>0\)
\(\sqrt{8-2\sqrt{15}}=\sqrt{8-2\sqrt{5.3}}\)
\(=\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{3}\right|=\sqrt{5}-\sqrt{3}\)vì \(\sqrt{5}-\sqrt{3}>0\)
Đk: \(x\ge0\)
Ta thấy x=0 không thoả mãn phương trình đầu tiên => x>0
Chia hai vế của pt (2) cho x2 ta được:
\(2y\left(1+\sqrt{4y^2+1}\right)=\frac{1}{x}\left(1+\sqrt{1+\frac{1}{x^2}}\right)\)
\(\Rightarrow y>0\)
+ Nếu \(2y>\frac{1}{x}\)\(\Rightarrow2y\left(1+\sqrt{4y^2+1}\right)>\frac{1}{x}\left(1+\sqrt{1+\frac{1}{x^2}}\right)\)
+ Nếu \(2y< \frac{1}{x}\Rightarrow2y\left(1+\sqrt{4y^2+1}\right)< \frac{1}{x}\left(1+\sqrt{1+\frac{1}{x^2}}\right)\)
\(\Rightarrow2y=\frac{1}{x}\). Thay vào pt(1) ta được:
\(x^3\left(\frac{1}{x^2}+1\right)+2\sqrt{x}=4\)
hay \(x^3+x+2\sqrt{x}=4\)
Ta thấy x=1 là nghiệm của pt trên.
+ Nếu \(x>1\Rightarrow x^3+x+2\sqrt{x}>4\)
+ Nếu \(x< 1\Rightarrow x^3+x+2\sqrt{x}< 4\)
Vậy pt trên có nghiệm duy nhất là x=1
\(\Rightarrow y=\frac{1}{2}\)
KL: hpt đã cho có nghiệm (x;y)=(1;1/2)
GTNN là 2/3 khi x = 1