Cho tam giác ABC , các điểm M,N,P lần lượt nằm trên các cạnh AB,AC,BC sao cho AM = 1/3 AB ; NC = 1/3 AC ; BP = 1/3 BC .
Nối CM , BN , AP chúng cắt nhau lần lượt tại các điểm I , H, K .
Hãy chứng tỏ diện tích của tam giác IHK = tổng dienj tích của 3 tam giác HAM , KBP , ICN .
Giups mk nhé ###
\(S_{AMC}=\frac{1}{3}S_{ABC}\) ( Vì hai tam giác có chung chiều cao hạ từ đỉnh \(C\)xuống \(AB\) và \(AM=\frac{1}{3}AB\))
\(S_{BNC}=\frac{1}{3}S_{ABC}\) ( Vì hai tam giác có chung chiều cao hạ từ đỉnh \(B\)xuống \(AC\) và \(NC=\frac{1}{3}AC\))
\(S_{ABP}=\frac{1}{3}S_{ABC}\) ( Vì hai tam giác có chung chiều cao hạ từ đỉnh \(A\)xuống \(BC\)và \(BP=\frac{1}{3}BC\))
Suy ra : \(S_{AMC}+S_{BNC}+S_{BKP}=S_{ABC}\)
Tuy nhiên trên hình vẽ tổng diện tích 3 tam giác chưa phủ kín \(S_{ABC}\) , còn phần trống là \(S_{IHK}\).
Mà trong tổng diện tích 3 tam giác trên có : \(S_{AMH}\) ; \(S_{BKP}\); \(S_{INC}\) bị tính 2 lần .
Vậy : \(S_{IHK=}S_{AMH}+S_{BKP}+S_{INC}\)( đpcm )