Biết x2+4y2+9z2=3 Tìm GTLN của S=2x+4y+6x
Cho x;y ∈ 𝑅 thỏa mãn x2+y2 -xy=4 . Tìm giá trị lớn nhất và nhỏ nhất của C= x2+y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A\left(x\right)=2x^3-x^2-x+1\)
\(=\left(2x^3-4x^2\right)+\left(3x^2-6x\right)+\left(5x-10\right)+11\)
\(=\left(x-2\right).\left(2x^2+3x+5\right)+11\)
Vậy \(A\left(x\right):B\left(x\right)=2x^2+3x+5\) dư \(11\)
b) Để \(A\left(x\right)⋮B\left(x\right)\) thì \(11⋮B\left(x\right)\)
\(\Rightarrow x-2\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
\(\Rightarrow x\inơ\left\{13;3;2;-9\right\}\)
Tính (3x-2)(3x+2) bằng
Áp dụng hằng đẳng thức
(3x-2)(3x+2) = 9x2- 4
HT
a/ MN là ĐTB của tam giác ABC
=> MN//AB
=> NMC=ABC=90-30=60 độ
b/ N là trung điểm 2 đường chéo AC và ME của tg AECM
=> AECM là hình bình hành.
c/ c/ gọi O là giao của MC và DE khi đó tam giác EMD có ON là ĐTB nên ON//DM và tam giác AMC có ON là ĐTB nên ON // AM
=> A, M, D thẳng hàng
=> M là trung điểm AD mặt khác có M là trung điểm BC
=> ABCD là hình bình hành mà góc A bằng 90 độ nên là hình chữ nhật
bn cho mình gửi sắp đến thi học kì 2 rồi. đây là những món quà mà bn sẽ nhận đc:
1: áo quần
2: tiền
3: đc nhiều người yêu quý
4: may mắn cả
5: luôn vui vẻ trong cuộc sống
6: đc crush thích thầm
7: học giỏi
8: trở nên xinh đẹp
phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người, sau 3 ngày bn sẽ có những đc điều đó. nếu bn ko gửi tin nhắn này cho 25 người thì bn sẽ luôn gặp xui xẻo, học kì 2 bn sẽ là học sinh yếu và bạn bè xa lánh( lời nguyền sẽ bắt đầu từ khi đọc)
\(S=2x+4y+6z\le2\sqrt{\left[x^2+\left(2y\right)^2+\left(3z\right)^2\right]\left(1^2+1^2+1^2\right)}=2\sqrt{3.3}=6\)
Dấu \(=\)khi \(\hept{\begin{cases}x^2+4y^2+9z^2=3\\\frac{x}{1}=\frac{2y}{1}=\frac{3z}{1}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{1}{2}\\z=\frac{1}{3}\end{cases}}\).
\(4=x^2+y^2-xy=\frac{1}{2}\left(x^2+y^2\right)+\frac{1}{2}\left(x-y\right)^2\ge\frac{1}{2}\left(x^2+y^2\right)\)
\(\Leftrightarrow x^2+y^2\le8\)
Dấu \(=\)khi \(x=y=\pm2\).
\(4=x^2+y^2-xy=\frac{3}{2}\left(x^2+y^2\right)-\frac{1}{2}\left(x+y\right)^2\le\frac{3}{2}\left(x^2+y^2\right)\)
\(\Leftrightarrow x^2+y^2\ge\frac{8}{3}\)
Dấu \(=\)khi \(x=-y=\pm\frac{2}{\sqrt{3}}\).