Giải ptr:
\(x^2 +5x+6=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 27.
a) \(-x^3+3x^2-3x+1=\left(1-x\right)^3\)
b) \(8-12x+6x^2-x^3=\left(2-x\right)^3\)
Bài 28.
a) \(x^3+12x^2+48x+64=\left(x+4\right)^3\)
Tại \(x=6\) ta có \(\left(x+4\right)^3=\left(6+4\right)^3=10^3=1000\)
b) \(x^3-6x^2+12x-8=\left(x-2\right)^3\)
Tại \(x=22\) ta có \(\left(x-2\right)^3=\left(22-2\right)^3=20^3=8000\)
Ta có :
2n2+5n-1 ⋮ 2n-1
=> 2n2-n+6n-3+2 ⋮ 2n-1
=> n(2n-1)+3(2n-1)+2 ⋮ 2n-1
=> (n+3)(2n-1) + 2 ⋮ 2n-1
Mà (n+3)(2n-1) ⋮ 2n-1
=> 2 ⋮ 2n-1 mà 2n-1 là số lẻ
=> 2n-1 ∈ {-1;1}
=> 2n∈ {0;2}
=> n ∈ {0;1}
Lời giải:
$x^2+2y^2+2xy-2x-2y+40=0$
$\Leftrightarrow (x^2+2xy+y^2)+y^2-2x-2y+40=0$
$\Leftrightarrow (x+y)^2-2(x+y)+1+y^2+40=0$
$\Leftrightarrow (x+y-1)^2+y^2=-40<0$ (vô lý)
Do đó không tồn tại $x,y$ thỏa mãn đề. Do đó không tính được $P$
\(\dfrac{20009^2}{20008^2+20010^2-2}=\dfrac{20009^2}{\left(20008^2-1^2\right)+\left(20010^2-1^2\right)}=\dfrac{20009^2}{\left(20008+1\right)\left(20008-1\right)+\left(20010+1\right)\left(20010-1\right)}\)
\(=\dfrac{20009^2}{20009.20007+20011.20009}=\dfrac{20009^2}{20009\left(20007+20011\right)}\)
\(=\dfrac{20009}{20007+20011}=\dfrac{20009}{40018}=\dfrac{20009}{2.20009}=\dfrac{1}{2}\)
Lời giải:
a.
$(5a+5)^2+10(a-3)(1+a)+a^2-6a+9$
$=(5a+5)^2+2(a-3)(5a+5)+(a-3)^2$
$=(5a+5+a-3)^2$
$=(6a+2)^2$
b.
$B=(a-b)^3-3(b-a)^2c+3(a-b)c^2-c^3$
$=(a-b)^3-3(a-b)^2c+3(a-b)c^2-c^3$
$=(a-b-c)^3$
1) (3x2 + \(\dfrac{y}{4}\) )3 = (3x2)3 + 3.(3x2)2. \(\dfrac{y}{4}\) + 3.3x2 . \(\dfrac{y^2}{16}\) + \(\dfrac{y^3}{64}\)
2) (4 - 26)3 = 43 - 3.42.26 + 3.4.262 - 263
3) (2a + 3b)2 = (2a)2 + 2.2a.3b + (3b)2
4) (\(\dfrac{b}{2}\) - 5).(\(\dfrac{b}{2}\) + 5) = \(\left(\dfrac{b}{2}\right)^2\) - 52
a.
\(\left(x^2+x\right)^2-6x^2-6x+8=0\)
\(\Leftrightarrow\left(x^2+x\right)^2-6\left(x^2+x\right)+8=0\)
\(\Leftrightarrow\left(x^2+x\right)^2-2\left(x^2+x\right)-4\left(x^2+x\right)+8=0\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-4\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2+x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{-1\pm\sqrt{17}}{2}\end{matrix}\right.\)
b.
\(\left(x^2+10x+16\right)\left(x^2+10x+24\right)-20=0\)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)-20=0\)
\(\Leftrightarrow\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)-20=0\)
\(\Leftrightarrow\left(x^2+10x+16\right)^2-2\left(x^2+10x+16\right)+10\left(x^2+10x+16\right)-20=0\)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+14\right)+10\left(x^2+10x+14\right)=0\)
\(\Leftrightarrow\left(x^2+10x+14\right)\left(x^2+10x+26\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+10x+14=0\\x^2+10x+26=0\left(vn\right)\end{matrix}\right.\)
\(\Leftrightarrow x=-5\pm\sqrt{11}\)
\(\Leftrightarrow x^4+2x^3+2x^2-2x^2-4x-4=0\)
\(\Leftrightarrow x^2\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=2\\\left(x+1\right)^2+1=0\left(\text{vô nghiệm}\right)\end{matrix}\right.\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
\(x^2 +5x+6=0\)
\(<=>x^2+3x+2x+6=0\)
\(<=>x(x+3)+2(x+3)=0\)
\(<=>(x+3)(x+2)=0\)
\(<=>\) $\begin{cases} x=-3\\x=-2 \end{cases}$
Vậy `S=`{`-3;-2`}
Lời giải:
$x^2+5x+6=0$
$\Leftrightarrow (x^2+2x)+(3x+6)=0$
$\Leftrightarrow x(x+2)+3(x+2)=0$
$\Leftrightarrow (x+2)(x+3)=0$
$\Leftrightarrow x+2=0$ hoặc $x+3=0$
$\Leftrightarrow x=-2$ hoặc $x=-3$