K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 6 2024

Lời giải:

ĐKXĐ: $a\geq 0; a\neq 1$

\(P=\frac{a+3\sqrt{a}+2}{a+\sqrt{a}-2}=\frac{(a+\sqrt{a})+(2\sqrt{a}+2)}{(a-\sqrt{a})+(2\sqrt{a}-2)}\\ =\frac{\sqrt{a}(\sqrt{a}+1)+2(\sqrt{a}+1)}{\sqrt{a}(\sqrt{a}-1)+2(\sqrt{a}-1)}\\ =\frac{(\sqrt{a}+1)(\sqrt{a}+2)}{(\sqrt{a}-1)(\sqrt{a}+2)}=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)

29 tháng 6 2024

\(a)\dfrac{7}{x+4}-\dfrac{3x}{x^2-16}\left(x\ne\pm4\right)\\ =\dfrac{7}{x+4}-\dfrac{3x}{\left(x+4\right)\left(x-4\right)}\\ =\dfrac{7\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}-\dfrac{3x}{\left(x+4\right)\left(x-4\right)}\\ =\dfrac{7x-28-3x}{\left(x+4\right)\left(x-4\right)}\\ =\dfrac{4x-28}{\left(x+4\right)\left(x-4\right)}\\ =\dfrac{4x-28}{x^2-16}\)

\(b)\dfrac{x^2-3}{\left(x-1\right)\left(x-2\right)}-\dfrac{x+1}{x-1}\left(x\ne1;x\ne2\right)\\ =\dfrac{x^2-3}{\left(x-1\right)\left(x-2\right)}-\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}\\ =\dfrac{x^2-3-\left(x^2-2x+x-2\right)}{\left(x-1\right)\left(x-2\right)}\\ =\dfrac{x^2-3-x^2+x+2}{\left(x-1\right)\left(x-2\right)}\\ =\dfrac{x-1}{\left(x-1\right)\left(x-2\right)}\\ =\dfrac{1}{x-2}\) 

\(c)\dfrac{x-3}{x^2-3x+2}+\dfrac{3}{x-2}\left(x\ne1;x\ne2\right)\\ =\dfrac{x-3}{\left(x-1\right)\left(x-2\right)}+\dfrac{3}{x-2}\\ =\dfrac{x-3}{\left(x-1\right)\left(x-2\right)}+\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}\\ =\dfrac{x-3+3x-3}{\left(x-1\right)\left(x-2\right)}\\ =\dfrac{4x-6}{\left(x-1\right)\left(x-2\right)}\)

a: ĐKXĐ: \(x\notin\left\{-4;4\right\}\)

\(\dfrac{7}{x+4}-\dfrac{3x}{x^2-16}\)

\(=\dfrac{7}{x+4}-\dfrac{3x}{\left(x-4\right)\left(x+4\right)}\)

\(=\dfrac{7\left(x-4\right)-3x}{\left(x+4\right)\left(x-4\right)}=\dfrac{4x-28}{\left(x+4\right)\left(x-4\right)}\)

b: ĐKXĐ: \(x\notin\left\{2;1\right\}\)

\(\dfrac{x^2-3}{\left(x-1\right)\left(x-2\right)}+\dfrac{x+1}{x-1}\)

\(=\dfrac{x^2-3+\left(x+1\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}\)

\(=\dfrac{x^2-3+x^2-x-2}{\left(x-1\right)\left(x-2\right)}=\dfrac{2x^2-x-5}{\left(x-1\right)\left(x-2\right)}\)

c: ĐKXĐ: \(x\notin\left\{1;2\right\}\)

\(\dfrac{x-3}{x^2-3x+2}+\dfrac{3}{x-2}\)

\(=\dfrac{x-3}{\left(x-1\right)\left(x-2\right)}+\dfrac{3}{x-2}\)

\(=\dfrac{x-3+3\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}=\dfrac{4x-6}{\left(x-1\right)\left(x-2\right)}\)

29 tháng 6 2024

đề là rút gọn đk bn 

a,đk x khác 3 

 \(\dfrac{2}{x-3}-\dfrac{x-1}{x-3}=\dfrac{2-x+1}{x-3}=\dfrac{3-x}{x-3}=-1\)đ

b,đk x khác -1/2

 \(\dfrac{x-4}{2x+1}+\dfrac{3x-3}{2x+1}=\dfrac{x-4+3x-3}{2x+1}=\dfrac{4x-7}{2x+1}\)

c, đk x khác -4;4 

\(\dfrac{7}{x+4}-\dfrac{3x}{x^2-16}=\dfrac{7\left(x-4\right)-3x}{x^2-16}=\dfrac{7x-28-3x}{x^2-16}=\dfrac{4x-28}{x^2-16}\)

d, đk x khác -1 

\(\dfrac{3x-3}{2x+2}-\dfrac{6}{x+1}=\dfrac{3x-3-12}{2\left(x+1\right)}=\dfrac{3x-15}{2\left(x+1\right)}\)

29 tháng 6 2024

\(\left\{{}\begin{matrix}3x+2y=6\\2x-2y=14\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3x+2y=6\\3x+2x=14+6\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3x+2y=6\\5x=20\end{matrix}\right. \\ \Leftrightarrow\left\{{}\begin{matrix}3\cdot4+2y=6\\x=\dfrac{20}{5}=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2y=6-12=-6\\x=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{6}{2}=-3\\x=4\end{matrix}\right.\)

Vậy: ...

29 tháng 6 2024

\(\left\{{}\begin{matrix}0,5x-1,5y=1\\-x+3y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-3y=2\\-x+3y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\-\left(3y+2\right)+3y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\-3y-2+3y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\-2=2\end{matrix}\right.\)

=> Hpt vô nghiệm 

29 tháng 6 2024

0,5x - 1,5y = 1 (1)

-x + 3y = 2 (2)

Từ (2) ta có:

x = 3y - 2 (3)

Thế (3) vào (1), ta có:

0,5(3y - 2) - 1,5y = 1

1,5y - 1 - 1,5y = 1

0y = 1 + 1

0y = 2 (vô lý)

Vậy loading...

ĐKXĐ: \(x\notin\left\{1;-1;2;-2\right\}\)

\(\dfrac{x+4}{x-1}+\dfrac{x-4}{x+1}=\dfrac{x+8}{x-2}+\dfrac{x-8}{x+2}+6\)

=>\(\dfrac{\left(x+4\right)\left(x+1\right)+\left(x-4\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+8\right)\left(x+2\right)+\left(x-8\right)\left(x+2\right)+6\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

=>\(\dfrac{2x^2+8}{x^2-1}=\dfrac{x^2+10x+16+x^2-10x+16+6\left(x^2-4\right)}{x^2-4}\)

=>\(\dfrac{2x^2+8}{x^2-1}=\dfrac{2x^2+32+6x^2-24}{x^2-4}\)

=>\(\dfrac{2x^2+8}{x^2-1}=\dfrac{8x^2+8}{x^2-4}\)

=>\(\dfrac{x^2+4}{x^2-1}=\dfrac{4\left(x^2+1\right)}{x^2-4}\)

=>\(4\left(x^2+1\right)\left(x^2-1\right)=\left(x^2+4\right)\left(x^2-4\right)\)

=>\(4\left(x^4-1\right)=x^4-16\)

=>\(4x^4-4-x^4+16=0\)

=>\(3x^4+12=0\)(vô lý)

Vậy: Phương trình vô nghiệm

Bài 1:

e: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{16}{x^2-1}\)

=>\(\dfrac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{16}{\left(x-1\right)\left(x+1\right)}\)

=>\(\left(x+1\right)^2-\left(x-1\right)^2=16\)

=>\(\left(x+1+x-1\right)\left(x+1-x+1\right)=16\)

=>4x=16

=>x=4(nhận)

f: ĐKXĐ: \(x\notin\left\{1-1\right\}\)

\(\left(1-\dfrac{x-1}{x+1}\right)\left(x+2\right)=\dfrac{x+1}{x-1}+\dfrac{x-1}{x+1}\)

=>\(\dfrac{x+1-x+1}{\left(x+1\right)}\left(x+2\right)=\dfrac{\left(x+1\right)^2+\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\)

=>\(\dfrac{2\left(x+2\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{2x^2+2}{\left(x-1\right)\left(x+1\right)}\)

=>\(2\left(x+2\right)\left(x-1\right)=2\left(x^2+1\right)\)

=>\(\left(x+2\right)\left(x-1\right)=x^2+1\)

=>\(x^2+x-2=x^2+1\)

=>x-2=1

=>x=3(nhận)

a: ĐKXĐ: \(x\notin\left\{0;-1;4\right\}\)

\(\dfrac{11}{x}=\dfrac{9}{x+1}+\dfrac{2}{x-4}\)

=>\(\dfrac{11}{x}=\dfrac{9\left(x-4\right)+2\left(x+1\right)}{\left(x+1\right)\left(x-4\right)}\)

=>\(\dfrac{11}{x}=\dfrac{11x-34}{x^2-3x-4}\)

=>\(11\left(x^2-3x-4\right)=x\left(11x-34\right)\)

=>\(11x^2-33x-44=11x^2-34x\)

=>-33x-44=-34x

=>-33x+34x=44

=>x=44(nhận)

b: ĐKXĐ: \(x\ne4\)

\(\dfrac{14}{3x-12}-\dfrac{2+x}{x-4}=\dfrac{3}{8-2x}-\dfrac{5}{6}\)

=>\(\dfrac{14}{3\left(x-4\right)}-\dfrac{x+2}{x-4}=\dfrac{-3}{2\left(x-4\right)}-\dfrac{5}{6}\)

=>\(\dfrac{28}{6\left(x-4\right)}-\dfrac{6\left(x+2\right)}{6\left(x-4\right)}=\dfrac{-9}{6\left(x-4\right)}-\dfrac{5\left(x-4\right)}{6\left(x-4\right)}\)

=>28-6(x+2)=-9-5(x-4)

=>28-6x-12=-9-5x+20

=>-6x+16=-5x+11

=>-6x+5x=11-16

=>-x=-5

=>x=5(nhận)

c: ĐKXĐ: \(x\notin\left\{\dfrac{1}{3};-\dfrac{1}{3}\right\}\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\)

=>\(\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)

=>\(\left(1-3x\right)^2-\left(1+3x\right)^2=12\)

=>\(9x^2-6x+1-9x^2-6x-1=12\)

=>-12x=12

=>x=-1(nhận)

d: ĐKXĐ: \(x\notin\left\{0;5;-5\right\}\)

\(\dfrac{x+5}{x^2-5x}-\dfrac{x+25}{2x^2-50}=\dfrac{x-5}{2x^2+10x}\)

=>\(\dfrac{x+5}{x\left(x-5\right)}-\dfrac{x+25}{2\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{2x\left(x+5\right)}\)

=>\(\dfrac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}-\dfrac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}=\dfrac{\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}\)

=>\(2\left(x+5\right)^2-x\left(x+25\right)=\left(x-5\right)^2\)

=>\(2x^2+20x+50-x^2-25x=x^2-10x+25\)

=>-5x+50=-10x+25

=>5x=-25

=>x=-5(loại)

 

Bài 2:

a: ĐKXĐ: \(x\notin\left\{2;5\right\}\)

\(\dfrac{6x+1}{x^2-7x+10}+\dfrac{5}{x-2}=\dfrac{3}{x-5}\)

=>\(\dfrac{6x+1}{\left(x-2\right)\left(x-5\right)}+\dfrac{5\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}=\dfrac{3\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}\)

=>6x+1+5x-25=3x-6

=>11x-24=3x-6

=>8x=18

=>x=9/4(nhận)

b: ĐKXĐ: \(x\notin\left\{0;2;-2\right\}\)

\(\dfrac{2}{x^2-4}-\dfrac{x-1}{x\left(x-2\right)}+\dfrac{x-4}{x\left(x+2\right)}=0\)

=>\(\dfrac{2x}{x\left(x-2\right)\left(x+2\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\dfrac{\left(x-4\right)\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}=0\)

=>2x-(x-1)(x+2)+(x-4)(x-2)=0

=>\(2x-\left(x^2+x-2\right)+x^2-6x+8=0\)

=>\(x^2-4x+8-x^2-x+2=0\)

=>-5x+10=0

=>x=2(loại)

c: ĐKXĐ: \(x\notin\left\{3;-1\right\}\)

\(\dfrac{1}{3-x}-\dfrac{1}{x+1}=\dfrac{x}{x-3}-\dfrac{\left(x-1\right)^2}{x^2-2x-3}\)

=>\(\dfrac{-1}{x-3}-\dfrac{1}{x+1}-\dfrac{x}{x-3}+\dfrac{\left(x-1\right)^2}{\left(x-3\right)\left(x+1\right)}=0\)

=>\(\dfrac{\left(-1-x\right)\left(x+1\right)-x+3}{\left(x-3\right)\left(x+1\right)}+\dfrac{\left(x-1\right)^2}{\left(x-3\right)\left(x+1\right)}=0\)

=>-(x+1)^2-x+3+(x-1)2=0

=>\(-x^2-2x-1-x+3+x^2-2x+1=0\)

=>-5x+3=0

=>\(x=\dfrac{3}{5}\left(nhận\right)\)

d: ĐKXĐ: \(x\notin\left\{2;-3\right\}\)

\(\dfrac{1}{x-2}-\dfrac{6}{x+3}=\dfrac{5}{6-x^2-x}\)

=>\(\dfrac{x+3-6\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}=\dfrac{-5}{\left(x+3\right)\left(x-2\right)}\)

=>x+3-6(x-2)=-5

=>x+3-6x+12+5=0

=>-5x+20=0

=>x=4(nhận)

e: ĐKXĐ: x<>-2

\(\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\)

=>\(\dfrac{2}{x+2}-\dfrac{2x^2+16}{\left(x+2\right)\left(x^2-2x+4\right)}-\dfrac{5}{x^2-2x+4}=0\)

=>\(\dfrac{2\left(x^2-2x+4\right)-2x^2-16-5x-10}{\left(x+2\right)\left(x^2-2x+4\right)}=0\)

=>\(2x^2-4x+8-2x^2-5x-26=0\)

=>-9x-18=0

=>x=-2(loại)

f: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{2\left(x+2\right)^2}{x^6-1}\)

=>\(\dfrac{\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x^2-x+1\right)}=\dfrac{2\left(x+2\right)^2}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

=>\(\dfrac{2}{\left(x^2+x+1\right)\left(x^2-x+1\right)}=\dfrac{2\left(x+2\right)^2}{\left(x^2-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

=>2(x^2-1)=2(x+2)^2

=>\(x^2-1=\left(x+2\right)^2\)

=>\(x^2+4x+4-x^2+1=0\)

=>4x+5=0

=>\(x=-\dfrac{5}{4}\left(nhận\right)\)

Bài 3:

 

c:

=>\(\dfrac{x}{x-1}+\dfrac{x}{x-2}+\dfrac{x}{x-3}=\dfrac{3x-12}{x-6}\)

=>

ĐKXĐ: \(x\notin\left\{1;2;\dfrac{3\pm\sqrt{7}}{2}\right\}\)

 \(\dfrac{4}{x^2-3x+2}-\dfrac{3}{2x^2-6x+1}+1=0\)

=>\(\dfrac{4\left(2x^2-6x+1\right)-3\left(x^2-3x+2\right)}{\left(x^2-3x+2\right)\left(2x^2-6x+1\right)}=-1\)

=>\(8x^2-24x+4-3x^2+9x-6=-\left(x^2-3x+2\right)\left[2\cdot\left(x^2-3x\right)+1\right]\)

=>\(5x^2-15x-2=-\left[2\left(x^2-3x\right)^2+5\left(x^2-3x\right)+2\right]\)

=>\(5\left(x^2-3x\right)-2+2\left(x^2-3x\right)^2+5\left(x^2-3x\right)+2=0\)

=>\(2\left(x^2-3x\right)^2+10\left(x^2-3x\right)=0\)

=>\(\left(x^2-3x\right)^2+5\left(x^2-3x\right)=0\)

=>\(\left(x^2-3x\right)\left(x^2-3x+5\right)=0\)

mà \(x^2-3x+5=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}>0\forall x\)

nên x(x-3)=0

=>\(\left[{}\begin{matrix}x=0\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)

a:

ĐKXĐ: \(x\notin\left\{8;9;10;11\right\}\)

 \(\dfrac{8}{x-8}+\dfrac{11}{x-11}=\dfrac{9}{x-9}+\dfrac{10}{x-10}\)

=>\(\left(\dfrac{8}{x-8}+1\right)+\left(\dfrac{11}{x-11}+1\right)=\left(\dfrac{9}{x-9}+1\right)+\left(\dfrac{10}{x-10}+1\right)\)

=>\(\dfrac{x}{x-8}+\dfrac{x}{x-11}-\dfrac{x}{x-9}-\dfrac{x}{x-10}=0\)

=>\(x\left(\dfrac{1}{x-8}+\dfrac{1}{x-11}-\dfrac{1}{x-9}-\dfrac{1}{x-10}\right)=0\)

=>x=0(nhận)

b:

ĐKXĐ: \(x\notin\left\{3;4;5;6\right\}\)

 \(\dfrac{x}{x-3}-\dfrac{x}{x-5}=\dfrac{x}{x-4}-\dfrac{x}{x-6}\)

=>\(\dfrac{x\left(x-5\right)-x\left(x-3\right)}{\left(x-3\right)\left(x-5\right)}=\dfrac{x\left(x-6\right)-x\left(x-4\right)}{\left(x-4\right)\left(x-6\right)}\)

=>\(\dfrac{-2x}{\left(x-3\right)\left(x-5\right)}=\dfrac{-2x}{\left(x-4\right)\left(x-6\right)}\)

=>\(x\left(\dfrac{1}{\left(x-3\right)\left(x-5\right)}-\dfrac{1}{\left(x-4\right)\left(x-6\right)}\right)=0\)

=>\(x\cdot\dfrac{\left(x-4\right)\left(x-6\right)-\left(x-3\right)\left(x-5\right)}{\left(x-3\right)\left(x-5\right)\left(x-4\right)\left(x-6\right)}=0\)

=>\(x\left(x^2-10x+24-x^2+8x-15\right)=0\)

=>x(-2x+9)=0

=>\(\left[{}\begin{matrix}x=0\left(nhận\right)\\x=\dfrac{9}{2}\left(nhận\right)\end{matrix}\right.\)

29 tháng 6 2024

\(A=\left(\dfrac{x+1}{x^3-1}-\dfrac{1}{x-1}\right)\left(\dfrac{x+2}{x-1}-\dfrac{1}{x}\right)\left(x\ne1;0\right)\\ =\left[\dfrac{x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\left[\dfrac{x\left(x+2\right)}{x\left(x-1\right)}-\dfrac{x-1}{x\left(x-1\right)}\right]\\ =\dfrac{x+1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+2x-x+1}{x\left(x-1\right)}\\ =\dfrac{-x^2}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{x\left(x-1\right)}\\ =\dfrac{-x}{\left(x-1\right)^2}\\ =\dfrac{-x}{x^2-2x+1}\)

ĐKXĐ: \(x\notin\left\{1;0\right\}\)

\(A=\left(\dfrac{x+1}{x^3-1}-\dfrac{1}{x-1}\right)\left(\dfrac{x+2}{x-1}-\dfrac{1}{x}\right)\)

\(=\left(\dfrac{x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right)\cdot\left(\dfrac{x\left(x+2\right)-x+1}{x\left(x-1\right)}\right)\)

\(=\dfrac{x+1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{x\left(x-1\right)}\)

\(=\dfrac{-x^2}{\left(x-1\right)\cdot x\left(x-1\right)}=\dfrac{-x}{\left(x-1\right)^2}\)