Ở đáy một cái bể nước mắc 2 cái vòi để tháo nước ra bể. Nếu người ta để cả 2 vòi cùng tháo thì mất 6 giờ là hết nước trong bể. Nếu để mỗi vòi tháo riêng thì vòi thứ nhất tháo hết nước lâu hơn vòi thứ hai một mình tháo hết nước 5 giờ. Hỏi nếu mỗi vòi tháo riêng thì mất bao nhiêu giờ mới hết?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\widehat{AKB}=90^0\) (góc nội tiếp chắn nửa đường tròn)
\(\widehat{BEC}=90^0\) (Do \(CD\) là trung trực của \(OA\))
\(\Rightarrow\widehat{BKC}+\widehat{BEC}=90^0+90^0=180^0\)
\(\Rightarrow BEHK\) là tứ giác nội tiếp.
b) Ta có \(OC=OD=R\) nên tam giác \(OCD\) cân tại O
Mà \(OE\perp CD\Rightarrow OE\) là phân giác \(\widehat{COD}\Rightarrow\widehat{COA}=\widehat{DOA}\)
\(\Rightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{AD}\)
Do \(\left\{{}\begin{matrix}\widehat{ACH}=\dfrac{1}{2}sđ\stackrel\frown{AD}\\\widehat{AKC}=\dfrac{1}{2}sđ\stackrel\frown{AC}\end{matrix}\right.\Rightarrow\widehat{ACH}=\widehat{AKC}\)
Xét \(\Delta ACH\) và \(\Delta AKC\) có
\(\widehat{CAK}\) chung
\(\widehat{ACH}=\widehat{AKC}\) (cmt)
\(\Rightarrow\Delta ACH\sim\Delta AKC\) (g.g) \(\Rightarrow\dfrac{AC}{AH}=\dfrac{AK}{AC}\Rightarrow AC^2=AH.AK\)
Ta có: Tam giác \(AOC\) cân tại \(O\) (do \(OC=OA=R\))
Mặt khác: \(\Delta OEC\) vuông tại \(E\), có \(OE=\dfrac{1}{2}OA=\dfrac{1}{2}OC\)
\(\Rightarrow\widehat{OCE}=30^0\Rightarrow\widehat{AOC}=60^0\)
\(\Rightarrow\Delta OAC\) đều hay \(AC=OA=OC=R\)
Mình có nghĩ ra cách này mọi người xem giúp mình với
f(x) = \(ax^2+bx+c\)
Ta có f(0) = 2 => c = 2
Ta đặt Q(x) = \(ax^2+bx+c-2020\)
và G(x) = \(ax^2+bx+c+2021\)
f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư
\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)
Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0
hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)
G(x) chia cho x + 1 số dư
\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)
Mà G(x) chia hết cho x + 1 nên \(R_2\)=0
hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)
Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)
Help mik trg hôm nay vs ạ mik đag cần gấp