Cho x,y,z là các số thực dương thỏa mãn \(x\left(3-xy-xz\right)+y+6z\le5xz\left(y+z\right).\) . Tìm giá trị nhỏ nhất của biểu thức
P = 6x + 2y + 12z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x^2+y^2=a;xy=b\) \(\Rightarrow a-b=1\Leftrightarrow b=a-1\)
Từ giả thiết:\(x^2+y^2-xy=1\Leftrightarrow x^2+y^2+\left(x-y\right)^2=2\ge x^2+y^2\)
Và \(2x^2+2y^2=2xy+2\Leftrightarrow3\left(x^2+y^2\right)=\left(x+y\right)^2+2\ge2\)\(\Leftrightarrow x^2+y^2\ge\frac{2}{3}\)
Suy ra:\(\frac{2}{3}\le a\le2\)
Ta có:\(x^4+y^4-x^2y^2=\left(x^2+y^2\right)^2-3x^2y^2=a^2-3b^2=-2a^2+6a-3\)
Đến đây vẽ bảng biến thiên ra :))
Xét BPT: \(\frac{x}{x+1}-2\sqrt{\frac{x+1}{x}}>3\left(1\right)\)
ĐK: x<-1 và x>0
đặt \(t=\sqrt{\frac{x+1}{1}}\Rightarrow t^2=\frac{x+1}{x}\Rightarrow\frac{x}{x+1}=\frac{1}{t^2}\left(t>0\right)\)
vậy BPT (1) trở thành:
\(\frac{1}{t^2}-2t>3\Leftrightarrow2t^2+3t^2-1< 0\Leftrightarrow\left(t+1\right)^2\left(2t-1\right)< 0\)
\(\Leftrightarrow t< \frac{1}{2}\)so với điều kiện t>0 ta được \(0< t< \frac{1}{2}\)
Với 0<t<\(\frac{1}{2}\)có: \(0< \sqrt{\frac{x+1}{x}}< \frac{1}{2}\Leftrightarrow0< \frac{x+1}{x}< \frac{1}{4}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x+1}{x}>0\\\frac{x+1}{x}-\frac{1}{4}< 0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+1}{x}>0\\\frac{3x+4}{4x}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -1;x>0\\\frac{-4}{3}< x,0\end{cases}}}\)
\(\Leftrightarrow\frac{-4}{3}< x< 0\left(tmđk\right)\)