giả sử: a tỉ lệ nghịch với 1/b thì liệu a có tỉ lệ thuận với số nghịch đảo của 1/b (b)?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+1}{2}=\dfrac{y+3}{4}=\dfrac{z+5}{1}=\dfrac{2x+2}{4}=\dfrac{3y+9}{12}=\dfrac{4z+20}{4}=\dfrac{2x+2+3y+9+4z+20}{4+12+4}\)
\(=\dfrac{2x+3y+4z+31}{20}=\dfrac{9+31}{20}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x+1}{2}=2\\\dfrac{y+3}{4}=2\\z+5=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=5\\z=-3\end{matrix}\right.\)
\(\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{4}=\dfrac{3x^2}{27}=\dfrac{5y^2}{20}=\dfrac{3x^2-5y^2}{27-20}=\dfrac{28}{7}=4\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2}{9}=4\\\dfrac{y^2}{4}=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2=36\\y^2=16\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\pm6\\y^2=16\end{matrix}\right.\)
- Với \(x=6\Rightarrow D=6^3-16=200\)
- Với \(x=-6\Rightarrow D=\left(-6\right)^3-16=-232\)
Nếu \(a\) tỉ lệ nghịch với \(\dfrac{1}{b}\) thì
\(a=\dfrac{k}{\dfrac{1}{b}}\) \(\Rightarrow a=\dfrac{k\cdot b}{1}=kb\)
\(\Rightarrow a\) tỉ lệ thuận với \(b\) mà \(b\) là số nghịch đảo của \(\dfrac{1}{b}\)
Vậy nếu \(a\) tỉ lệ nghịch với \(\dfrac{1}{b}\) thì \(a\) tỉ lệ thuận với số nghịch đảo của \(\dfrac{1}{b}\)