Cho tam giác ABC căn tại A.Vẽ trung tuyến AM của tam giác ABC.
a)Chúng minh tam giác ABM=tam giác ACM.
b)Từ M vẽ MH vương góc AB (H thuộc AB) và MK vuông góc AC (K thuộc AC).Chúng minh:Tam giác AHK cân tại A.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng TCDTSBN:
$\frac{1}{x+y+z}=\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=\frac{2(x+y+z)}{x+y+z}=2$
$\Rightarrow x+y+z=\frac{1}{2}$
Có:
$\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=2$
$\Rightarrow \frac{y+z+1}{x}+1=\frac{x+z+2}{y}+1=\frac{x+y-3}{z}+1=3$
$\Rightarrow \frac{x+y+z+1}{x}=\frac{x+y+z+2}{y}=\frac{x+y+z-3}{z}=3$
$\Rightarrow \frac{1,5}{x}=\frac{2,5}{y}=\frac{-2,5}{z}=3$
$\Rightarrow x=0,5; y=\frac{5}{6}; z=\frac{-5}{6}$
a: Xét ΔABF và ΔAEC có
AB=AE
\(\widehat{BAF}=\widehat{EAC}\)(hai góc đối đỉnh)
AF=AC
Do đó: ΔABF=ΔAEC
=>BF=EC
Xét ΔAEF và ΔABC có
AE=AB
\(\widehat{EAF}=\widehat{BAC}\)(hai góc đối đỉnh)
AF=AC
Do đó: ΔAEF=ΔABC
=>\(\widehat{AEF}=\widehat{ABC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên EF//BC
b: Ta có: FM+MB=FB
=>FB=2MF+MF=3MF
mà CE=3CN
và FB=CE
nên MF=CN
Xét ΔAFM và ΔACN có
AF=AC
\(\widehat{AFM}=\widehat{ACN}\)(ΔAFB=ΔACE)
FM=CN
Do đó: ΔAFM=ΔACN
=>\(\widehat{FAM}=\widehat{CAN}\)
mà \(\widehat{FAM}+\widehat{MAC}=180^0\)(hai góc kề bù)
nên \(\widehat{CAN}+\widehat{CAM}=180^0\)
=>M,A,N thẳng hàng
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
b: ta có: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
Ta có: ΔMAB=ΔMCD
=>AB=CD
mà AB<AC
nên CD<CA
=>\(\widehat{CAD}< \widehat{CDA}\)
mà \(\widehat{CDA}=\widehat{BAM}\)
nên \(\widehat{CAM}< \widehat{BAM}\)
c: Xét ΔAHM vuông tại H và ΔDKM vuông tại K có
MA=MD
\(\widehat{AMH}=\widehat{DMK}\)(hai góc đối đỉnh)
Do đó: ΔAHM=ΔDKM
=>AH=DK
d: Ta có: AM>AH(ΔAHM vuông tại H)
DM>DK(ΔDKM vuông tại K)
Do đó: AM+DM>AH+DK
=>AD>2DK
e:
Ta có: AG=2GM
mà AG+GM=AM
nên \(AG=\dfrac{2}{3}AM\)
Xét ΔBAC có
AM là đường trung tuyến
\(AG=\dfrac{2}{3}AM\)
Do đó: G là trọng tâm của ΔABC
Xét ΔABC có
G là trọng tâm của ΔABC
BG cắt AC tại N
CG cắt AB tại P
Do đó: N là trung điểm của AC, P là trung điểm của AB
Xét ΔABC có
G là trọng tâm của ΔABC
BN,CP là các đường trung tuyến
Do đó: \(BG=\dfrac{2}{3}BN;CG=\dfrac{2}{3}CP\)
Xét ΔGAB có GA+GB>AB
Xét ΔGAC có GA+GC>AC
Xét ΔGBC có GB+GC>BC
Do đó: \(2\left(GA+GB+GC\right)>AB+AC+BC\)
=>\(GA+GB+GC>\dfrac{AB+AC+BC}{2}\)
=>\(\dfrac{2}{3}\left(AM+BN+CP\right)>\dfrac{AB+AC+BC}{2}\)
=>\(AM+BN+CP>\dfrac{3}{4}\cdot\left(AB+AC+BC\right)\)
\(\dfrac{2}{3}:\left(x-\dfrac{1}{3}\right)^3-9=\dfrac{23}{3}\)
=>\(\dfrac{2}{3}:\left(x-\dfrac{1}{3}\right)^3=\dfrac{23}{3}+9=\dfrac{50}{3}\)
=>\(\left(x-\dfrac{1}{3}\right)^3=\dfrac{2}{3}:\dfrac{50}{3}=\dfrac{1}{25}\)
=>\(x-\dfrac{1}{3}=\dfrac{\sqrt[3]{5}}{5}\)
=>\(x=\dfrac{\sqrt[3]{5}}{5}+\dfrac{1}{3}=\dfrac{3\sqrt[3]{5}+5}{15}\)
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: Ta có: ΔABM=ΔACM
=>\(\widehat{MAB}=\widehat{MAC}\)
Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
=>AH=KA
Xét ΔAHK có AH=AK
nên ΔAHK cân tại A