Trong năm học 2014 đến 2015 số học sinh khá giỏi của trường tiểu học Đào Duy từ là 297 em chiếm 49,5% số học sinh toàn trường hỏi trường tiểu học Đào Duy từ có bao nhiêu học sinh
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo định lý Viet:
$x_1+x_2=2$
$x_1x_2=-6$
Khi đó:
$A=2x_1-x_1x_2+2x_2=2(x_1+x_2)-x_1x_2$
$=2.2-(-6)=4+6=10$
\(A=\dfrac{x^5+x^4+1}{x^3-1}-\dfrac{x^3-x-3}{x-1}\)
\(=\dfrac{x^5+x^4+1-\left(x^3-x-3\right).\left(x^2+x+1\right)}{\left(x-1\right).\left(x^2+x+1\right)}\)
\(=\dfrac{4x^2+4x+4}{\left(x-1\right).\left(x^2+x+1\right)}=\dfrac{4}{x-1}\)
Có \(2A=x^3\)
\(\Leftrightarrow\dfrac{8}{x-1}=x^3\)
\(\Leftrightarrow x^4-x^3-8=0\)
\(\Leftrightarrow\left(x^4-16\right)-\left(x^3-8\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right).\left(x^2+4\right)-\left(x-2\right).\left(x^2+2x+4\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x^3+x^2+2x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x^3+x^2+2x+4=0\left(1\right)\end{matrix}\right.\)
Phương trình (1) dùng máy tính được một nghiệm
x \(\approx-1,4\)
Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì $\Delta'=(m+1)^2-4m\geq 0$
$\Leftrightarrow (m-1)^2\geq 0$
$\Leftrightarrow m\neq 1$
Khi đó, áp dụng định lý Viet:
$x_1+x_2=2(m+1)$
$x_1x_2=4m$
Khi đó:
$(x_1+m)(x_2+m)=3m^2+12$
$\Leftrightarrow x_1x_2+m(x_1+x_2)+m^2=3m^2+12$
$\Leftrightarrow 4m+2m(m+1)+m^2=3m^2+12$
$\Leftrightarrow 3m^2+6m=3m^2+12$
$\Leftrightarrow 6m=12$
$\Leftrightarrow m=2$ (tm)
Lời giải:
Áp dụng BĐT AM-GM ta có:
$x^5+x^5+x^5+1+1\geq 5\sqrt[5]{x^{15}}=5x^3$
$y^5+y^5+y^5+1+1\geq 5\sqrt[5]{y^{15}}=5y^3$
$\Rightarrow 3(x^5+y^5)+4\geq 5(x^3+y^3)\geq 10$ (do $x^3+y^3\geq 2$)
$\Leftrightarrow x^5+y^5\geq 2$
Vậy $C_{\min}=2$. Giá trị này đạt tại $x=y=1$
Số HS toàn trường:
297: 49,5%= 600(học sinh)
Đ.số: 600 học sinh