Câu 9: Cho đoạn thẳng AB = 12 cm; Có điểm M thuộc đoạn thẳng Ab, sao cho AM = AB, Trên tia đối của tia BA lấy điểm F sao cho BF một phần tư của AB
a) Tính MB
bChứng tỏ điểm B là trung điểm của đoạn
cứu em với anh chị ơi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(1-A=\frac{10^{2023}-10^{2022}}{10^{2023}+2024}=\frac{9.10^{2022}}{10^{2023}+2024}=\frac{9}{10+\frac{2024}{10^{2022}}}< \frac{9}{10}=1-\frac{1}{10}=1-\frac{10^{2023}}{10^{2024}}=1-B\)
$\Rightarrow A>B$
Lời giải:
Vì số tự nhiên đó chia 17 dư 7 nên đặt nó là $A=17k+7$ với $k$ là số tự nhiên.
$A=17k+7$ chia 7 dư 4
$\Rightarrow 17k+7-4\vdots 7$
$\Rightarrow 17k+3\vdots 7$
$\Rightarrow 17k+3+14\vdots 7$
$\Rightarrow 17(k+1)\vdots 7\Rightarrow k+1\vdots 7$
$\Rightarrow k=7m-1$ với $m$ tự nhiên.
Khi đó: $A=17k+7=17(7m-1)+7=119m-10=119(m-1)+109$
Vậy số đó chia 119 dư 109.
a: Dãy dữ liệu này là số liệu
b: Chỗ không hợp lí là số 94, vì khó có chuyện mà một lớp có 94 bạn
biểu thức a=3/2n+1. tìm só nguyên n để a là số nguyên mọi người ơi cứu em,mai thi rồi.Tks nhiều ạ!!!
ĐKXĐ: \(n\ne-\dfrac{1}{2}\)
Để A là số nguyên thì \(3⋮2n+1\)
=>\(2n+1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{0;-2;2;-4\right\}\)
=>\(n\in\left\{0;-1;1;-2\right\}\)
\(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dots+\dfrac{1}{2024^2}\)
+, Ta thấy:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
\(...\)
\(\dfrac{1}{2024^2}< \dfrac{1}{2023.2024}\)
Suy ra: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2024^2}\)
\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dots+\dfrac{1}{2023.2024}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dots+\dfrac{1}{2023}-\dfrac{1}{2024}\)
\(=1-\dfrac{1}{2024}< 1\)
\(\Rightarrow S< 1\) (1)
+, Lại có: \(\dfrac{1}{2^2}>0\)
\(\dfrac{1}{3^2}>0\)
\(\dfrac{1}{4^2}>0\)
\(...\)
\(\dfrac{1}{2024^2}>0\)
Suy ra: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2024^2}>0\)
\(\Rightarrow S>0\) (2)
Từ (1) và (2) \(\Rightarrow0< S< 1\)
\(\Rightarrow\) S không phải là số tự nhiên
$Toru$
a: Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có: \(\widehat{xOt}< \widehat{xOy}\left(50^0< 120^0\right)\)
nên tia Ot nằm giữa hai tia Ox và Oy
b: Ta có: tia Ot nằm giữa hai tia Ox và Oy
=>\(\widehat{xOt}+\widehat{tOy}=\widehat{xOy}\)
=>\(\widehat{tOy}+50^0=120^0\)
=>\(\widehat{tOy}=70^0\)
c: Ta có: \(\widehat{xOt}+\widehat{tOz}=\widehat{xOz}\)
=>\(\widehat{tOz}+50^0=180^0\)
=>\(\widehat{tOz}=130^0\)
m3 = 75.n (m; n ϵ N*)
m3 - 75n = 0
Ta có: 75 = 1 x 75 = 3 x 25 = 15 x 5
Lập phương nhỏ nhất từ các tích trên:
\(1\times75\rightarrow75^3\)
\(3\times25\rightarrow75^3\)
\(15\times5\rightarrow15\times5\times3\times15\rightarrow15^3\)
Do 153 là giá trị nhỏ nhất ⇒ m = 15
⇒ n = 153 : 75 = 45
Vậy m = 15 và n = 45.
\(2\left(x+\dfrac{-5}{2}\right)^2+\dfrac{-5}{12}=\dfrac{1}{12}\)
=>\(2\left(x-\dfrac{5}{2}\right)^2=\dfrac{1}{12}+\dfrac{5}{12}=\dfrac{6}{12}=\dfrac{1}{2}\)
=>\(\left(x-\dfrac{5}{2}\right)^2=\dfrac{1}{4}\)
=>\(\left[{}\begin{matrix}x-\dfrac{5}{2}=\dfrac{1}{2}\\x-\dfrac{5}{2}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< 1\)
Đặt \(S=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
Ta có:
\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(S=1-\dfrac{1}{100}\)
\(S=\dfrac{99}{100}\)
mà
\(\dfrac{1}{2^2}=\dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{3.2}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
\(\Rightarrow A< S\)
\(=>A=\dfrac{99}{100}\)
\(=>A< 1\left(đpcm\right)\)
a) vì M nằm giữa đoạn thẳng AB nên ta có :
AM + MB = AB
AM + MB = 12 cm
Mà MA = MB = 12 : 2 = 6 cm
Vậy MB dài 6cm
b) Câu b bị thiếu đề nên mik ko giải dc =(