\(^{x^2-x+2\sqrt{x^3+1}=2\sqrt{x+1}}\)
\(5\sqrt{x^3+8}=2\left(x^2-x+6\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(tanC=\dfrac{AB}{AC}\Rightarrow AC=\dfrac{AB}{tanC}=\dfrac{8}{tan40^o}=9,52\left(cm\right)\)
\(sinC=\dfrac{AB}{BC}\Rightarrow BC=\dfrac{AB}{sinC}=\dfrac{8}{sin40^o}=12,5\left(cm\right)\)
C= \(\dfrac{√x-√y}{xy√xy}\) :
\(\dfrac{(1}{x})\) + \(\dfrac{(1}{y)}\) . \(\dfrac{1}{x+y+2√xy}\)
+ \(\dfrac{2}{(√x+√y)³}\) . \(\dfrac{(1}{√x)}\) + \(\dfrac{(1}{√y)}\)
Tính C với x = 2 - √3 ; y = 2+√3
ĐKXĐ : \(x\ne0;x\ne\pm1\)
a) Bạn ghi lại rõ đề.
b) \(B=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{x^2-1}=\dfrac{x-1}{x+1}+\dfrac{3x-x^2}{\left(x-1\right).\left(x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2+3x-x^2}{\left(x-1\right).\left(x+1\right)}=\dfrac{x+1}{\left(x-1\right).\left(x+1\right)}=\dfrac{1}{x-1}\)
c) \(P=A.B=\dfrac{x^2+x-2}{x.\left(x-1\right)}=\dfrac{\left(x-1\right).\left(x+2\right)}{x\left(x-1\right)}=\dfrac{x+2}{x}=1+\dfrac{2}{x}\)
Không tồn tại Min P \(\forall x\inℝ\)
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1$
a.
\(A=\left[\frac{x+2}{(\sqrt{x}-1)(x+\sqrt{x}+1)}+\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{x+\sqrt{x}+1}{(\sqrt{x}-1)(x+\sqrt{x}+1)}\right].\frac{2}{\sqrt{x}-1}\)
\(=\frac{x+2+x-\sqrt{x}-(x+\sqrt{x}+1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}.\frac{2}{\sqrt{x}-1}\)
\(=\frac{2(x-2\sqrt{x}+1)}{(\sqrt{x}-1)^2(x+\sqrt{x}+1)}=\frac{2(\sqrt{x}-1)^2}{(\sqrt{x}-1)^2(x+\sqrt{x}+1)}=\frac{2}{x+\sqrt{x}+1}\)
b.
Ta thấy với $x\geq 0 ; x\neq 1$ thì $x+\sqrt{x}+1\geq 1$
$\Rightarrow A=\frac{2}{x+\sqrt{x}+1}\leq 2$
Vậy $A$ đạt max bằng $2$ khi $x=0$
đkxđ: \(x\ge-\dfrac{1}{3}\)
pt đã cho tương đương với
\(\left(x-1\right)^2=\sqrt{3x+1}-\sqrt{x^2+x+2}\)
\(\Rightarrow\sqrt{3x+1}\ge\sqrt{x^2+x+2}\)
\(\Rightarrow3x+1\ge x^2+x+2\)
\(\Leftrightarrow x^2-2x+1\le0\)
\(\Leftrightarrow\left(x-1\right)^2\le0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\) (nhận)
Vậy, pt đã cho có nghiệm duy nhất \(x=1\)
https://olm.vn/cau-hoi/so-sanh-a-12-14-18-116-132-va-b-20032004giair-giup-to-voi-to-dang-can-gapnho-viet-ca-cach-giai-ra-nha.35768915511
a) đkxđ \(x\ge-1\)
pt đã cho tương đương với
\(x^2-x=2\left(\sqrt{x+1}-\sqrt{x^3+1}\right)\)
\(\Leftrightarrow x^2-x=2.\dfrac{x+1-\left(x^3+1\right)}{\sqrt{x+1}+\sqrt{x^3+1}}\)
\(\Leftrightarrow x\left(x-1\right)=2.\dfrac{x\left(1-x\right)}{\sqrt{x+1}+\sqrt{x^3+1}}\)
\(\Leftrightarrow x\left(x-1\right)\left[1+\dfrac{1}{\sqrt{x+1}+\sqrt{x^3+1}}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=1\left(nhận\right)\\1+\dfrac{1}{\sqrt{x+1}+\sqrt{x^3+1}}=0\left(vôlí\right)\end{matrix}\right.\)
Vậy pt đã cho có tâp nghiệm \(S=\left\{0;-1\right\}\)
\(x^2-x+2\sqrt[]{x^3+1}=2\sqrt[]{x+1}\)
\(\Leftrightarrow2\sqrt[]{x^3+1}-2\sqrt[]{x+1}-\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{4}=0\)
\(\Leftrightarrow2\sqrt[]{x+1}\left(\sqrt[]{x^2-x+1}-1\right)-\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=2\sqrt[]{x+1}\left(\sqrt[]{x^2-x+1}-1\right)-\dfrac{1}{4}\left(1\right)\)
mà \(\left(x+\dfrac{1}{2}\right)^2\ge0,\forall x\inℝ\)
\(\left(1\right)\Leftrightarrow2\sqrt[]{x+1}\left(\sqrt[]{x^2-x+1}-1\right)-\dfrac{1}{4}\ge0\)
\(\Leftrightarrow\sqrt[]{x+1}\left(\sqrt[]{x^2-x+1}-1\right)\ge\dfrac{1}{8}\left(2\right)\)
Điều kiện xác định :
\(\left\{{}\begin{matrix}x+1\ge0\\\sqrt[]{x^2-x+1}-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\\sqrt[]{x^2-x+1}\ge1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-x+1\ge1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\left(x-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\le0\cup x\ge1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\-1\le x\le0\end{matrix}\right.\)
BPT \(\left(2\right)\Leftrightarrow\left(x+1\right)\left(x^2-x+1-2\sqrt[]{x^2-x+1}-1\right)\ge\dfrac{1}{64}\)
\(\Leftrightarrow\left(x^2-x-2\sqrt[]{x^2-x+1}\right)\ge\dfrac{1}{64}\left(vì.x+1\ge0\right)\)
Đặt \(t=\sqrt[]{x^2-x+1}>0\)
\(BPT\Leftrightarrow t^2-2t-1-\dfrac{1}{64}\ge0\)
\(\Leftrightarrow t^2-2t-\dfrac{63}{64}\ge0\)
\(\Leftrightarrow t^2-2t+1-1-\dfrac{63}{64}\ge0\)
\(\Leftrightarrow\left(t-1\right)^2-\dfrac{127}{64}\ge0\)
\(\Leftrightarrow\left(t-1-\dfrac{\sqrt[]{127}}{8}\right)\left(t-1+\dfrac{\sqrt[]{127}}{8}\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}t\ge1+\dfrac{\sqrt[]{127}}{8}\\t\le1-\dfrac{\sqrt[]{127}}{8}\end{matrix}\right.\)
\(\Leftrightarrow t\ge1+\dfrac{\sqrt[]{127}}{8}\) \(\left(t>0;1-\dfrac{\sqrt[]{127}}{8}< 0\right)\)
\(\Leftrightarrow\sqrt[]{x^2-x+1}\ge1+\dfrac{\sqrt[]{127}}{8}\)
\(\Leftrightarrow x^2-x+1\ge\left(1+\dfrac{\sqrt[]{127}}{8}\right)^2\)
mà \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4},\forall x\)
\(\dfrac{3}{4}< \left(1+\dfrac{\sqrt[]{127}}{8}\right)^2\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\ge\left(1+\dfrac{\sqrt[]{127}}{8}\right)^2-\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2\ge\left(1+\dfrac{\sqrt[]{127}}{8}\right)^2-\dfrac{3}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}\le-\sqrt[]{\left(1+\dfrac{\sqrt[]{127}}{8}\right)^2-\dfrac{3}{4}}\\x-\dfrac{1}{2}\ge\sqrt[]{\left(1+\dfrac{\sqrt[]{127}}{8}\right)^2-\dfrac{3}{4}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le-\sqrt[]{\left(1+\dfrac{\sqrt[]{127}}{8}\right)^2-\dfrac{3}{4}}+\dfrac{1}{2}\\x\ge\sqrt[]{\left(1+\dfrac{\sqrt[]{127}}{8}\right)^2-\dfrac{3}{4}}+\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow x\ge\sqrt[]{\left(1+\dfrac{\sqrt[]{127}}{8}\right)^2-\dfrac{3}{4}}+\dfrac{1}{2}\) (so với đkxđ \(\left[{}\begin{matrix}x\ge1\\-1\le x\le0\end{matrix}\right.\))
\(\Leftrightarrow x=\sqrt[]{\left(1+\dfrac{\sqrt[]{127}}{8}\right)^2-\dfrac{3}{4}}+\dfrac{1}{2}\)