Cho tam giác ABC có M là trung điểm của AC. Trên AB, BC lấy E, D sao cho BM, AD, CE đồng quy tại K. Biết \(S_{AEK}=10cm^2;S_{BEK}=20cm^2\) . Tính : \(S_{ABC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) i) ta có \(\widehat{CAO}=\widehat{CMO}=90^0\)
=> tứ giác AOMC nội tiếp đường tròn đường kính OC
tương tự ta lại có \(\widehat{DBO}=\widehat{DMO}=90^0\)
=> tứ giác BOMD nội tiếp đường tròn đường kính OD
ii) Ta có \(\widehat{OBM}=\frac{1}{2}\widehat{AOM}\)( góc nội tiếp zà góc ở tâm cùng chắn 1 cung)
\(\widehat{AOC}=\frac{1}{2}\widehat{AOM}\)(t/c 2 đường tiếp tuyến cắt nhau )
=>\(\widehat{OBM}=\widehat{AOC}\)
=> \(OC//BM\)mà \(BM\perp OD\)(tính chất 2 tiếp tuyến cắt nhau)
=>\(OC\perp OD\)(dpcm)
ta có \(\widehat{AOC}=\widehat{AMC}\left(1\right)\)( hai góc nội tiếp cùng chắn 1 cung AC của đường tròn đường kính OD )
\(\widehat{OBM}=\widehat{ODM}\left(2\right)\)(hai góc nội tiếp cùng chắn 1 cung OM của đường tròn đường kính OD)
\(\widehat{AOC}=\widehat{OBM}\left(3\right)\left(cmt\right)\)
zậy từ 1 ,2 ,3 => góc AOC= góc AMC = góc OBM = góc ODM
b)+) \(\widehat{BAM}=\widehat{BMD}=60^0\)( góc nội tiếp zà góc giữa 1 tia tiếp tuyến zà một dây cung cùng chắn 1 cung)
mà tam giác DBM cân tại D ( t/c 2 tiếp tuyến cát nhau )
=> tam giác DBM đều (dpcm)
+)\(\widehat{BOM}=2\widehat{BAM}=120^0\)( góc nội tiếp zà góc ở tâm cùng chắn 1 cung )
gọi S là diện tích cần tìm
\(=>S=\frac{\pi R^2120}{360}=\frac{\pi R^2}{3}\)(đơn zị diện tích )
ta có \(a\ge b\ge c\)
zì \(c\le b\)nên \(\left(a+b+c\right)^2\le\left(a+2b\right)^2\)
do zậy ta chỉ cần chứng minh \(9ab\ge\left(a+2b\right)^2\)
tương đương zới \(a^2-5ab+4b^2\le0\Leftrightarrow\left(a-b\right)\left(a-4b\right)\le0\)
zì \(a\ge b\)zà theo bất đẳng thức tam giác có \(a< b+c\le2b\le4b\)nên điều trên luôn đúng
zậy bất đẳng thức đc CM . dấu "=" xảy ra khi zà chỉ khi a=b=c hay tam giác ABC đều
không chắc lắm.
bình phương 2 vế => \(x+y+2\sqrt{xy}=\sqrt{8\left(x^2+9y^2\right)}\)
Theo Cauchy-schwarz ta có:
\(VP\ge\sqrt{\frac{8.\left(x+3y\right)^2}{2}}=2\left(x+3y\right)=\left(x+y\right)+\left(x+5y\right)\)
Theo AM-GM \(\Rightarrow VT=VP\ge\left(x+y\right)+2\sqrt{xy}+4y=VT+4y\)
=> Dấu "=" xảy ra <=> x=y=0
thay vào phương trình 1 => vô lý
=> phương trình vô nghiệm
y=2x hệ \(\Leftrightarrow\hept{\begin{cases}x-2x=a\\7x-2\cdot2x=5a-1\end{cases}\Leftrightarrow\hept{\begin{cases}-x=a\\3x=5a-1\end{cases}\Leftrightarrow}\hept{\begin{cases}-x=a\\3\cdot\left(-a\right)=5a-1\left(1\right)\end{cases}}}\)
(1) <=> \(5a+3a-1=0\)
<=> \(x=\frac{1}{8}\)
Vậy \(x=\frac{1}{8}\)
Thay \(y=a-x\) vào biểu thức \(P\).Vì \(x+y=a\); \(x,y\ge0\); \(0\le x,y\le a\)
Ta có : \(P=40x+x\left(a-x\right)=-x^2+\left(40+a\right)x\)
Nếu \(a\ge40\):
\(P=-\left[x^2+\left(40+a\right)x\right]\)
\(P=\left(\frac{40+a}{2}\right)^2-\left[x^2-2x\cdot\frac{40+a}{2}+\left(\frac{40+a}{2}\right)^2\right]\)
\(P=\left(\frac{40+a}{2}\right)^2-\left(x-\frac{40+a}{2}\right)^2\)
Dễ thấy \(\left(x-\frac{40+a}{2}\right)^2\ge0\)với mọi \(0\le x\le a\)
\(\Leftrightarrow P\le\left(\frac{40+a}{2}\right)^2\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}x=\frac{40+a}{2}\\b=\frac{a-40}{2}\end{cases}}\)
Nếu \(a< 40\)
\(P=-x^2+\left(40+a\right)x\)
\(P=40x-ax+a^2-\left(x-a\right)^2a\)
\(P=x\left(40-a\right)+a^2-\left(x-a\right)^2\)
Vì \(a< 40\); \(x\le a\)
\(\Rightarrow x\left(40-a\right)\le a\left(40-a\right)\)
\(\left(x-a\right)^2\ge0\)với mọi \(0\le x\le a\)
Do đó : \(P\le a\left(40-a\right)+a^2=40a\)
Dấu " = " xảy ra : \(\hept{\begin{cases}x=a\\y=0\end{cases}}\)
Vậy ....
Nguồn : h.o.c.24