K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2020

Sửa: \(M=\frac{6}{20x^6-\left(8-40y\right)x^2+25y^2-5}\)

Đặt \(N=20x^6-\left(8-40y\right)x^2+25y^2+5\)

\(=20\left[x^6-2x^3\frac{1-5y}{5}+\left(\frac{1-5y}{5}\right)^2\right]+25y^2-20\left(\frac{1-5y}{5}\right)^2=5\)

\(=20\left(x^3-\frac{1-5y}{5}\right)^2+25y^2-\frac{4}{5}+8y-20y^2+5=20\left(x^3-\frac{1-5y}{2}\right)^2+5\left(y+\frac{4}{5}\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}y=\frac{-4}{5}\\x=1\end{cases}\Rightarrow M=\frac{6}{N}\le\frac{6}{1}=6}\)

Vậy Max M=6 đạt được khi x=1; y=-4/5

11 tháng 5 2020

\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}=2\left(2\right)\\\sqrt{x+3}+\sqrt{y+3}=4\left(1\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow\sqrt{x+3}+\sqrt{y+3}=4\)

\(\Leftrightarrow x+3-y-3=4\left(\sqrt{x+3}-\sqrt{y+3}\right)\)

\(\Leftrightarrow x-y=4\left(\sqrt{x+3}+\sqrt{y+3}\right)\left(3\right)\)

\(\left(2\right)\Leftrightarrow x-y=2\left(\sqrt{x}-\sqrt{y}\right)\left(4\right)\)

Từ (3) và (4)

\(2\sqrt{x+3}-2\sqrt{y+3}=\sqrt{x}-\sqrt{y}\)

\(\Leftrightarrow2\left(\sqrt{x+3}+\sqrt{y+3}\right)=\sqrt{x}-\sqrt{y}\)

\(\Leftrightarrow4\left(x+3-2\sqrt{x+3}\sqrt{y+3}+y+3\right)=x-2\sqrt{x}\sqrt{y}+y\)

\(\Leftrightarrow4x-8\sqrt{x+3}\sqrt{y+3}+4y+24=x-2\sqrt{xy}+y\)

\(\Rightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

20 tháng 5 2020

Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=\frac{2m+4}{1}\\x_1x_2=\frac{2m+3}{1}\end{cases}}\)

\(\left(4x_1+1\right)\left(4x_2+1\right)=25\)

\(< =>16x_1x_2+4x_1+4x_2+1=25\)

\(< =>16\frac{2m+3}{1}+4\frac{2m+4}{1}=24\)

\(< =>32m+48+8m+16=24\)

\(< =>40m=24-64=-40\)

\(< =>m=-1\)

10 tháng 5 2020

tui chịu mới lớp 4

17 tháng 5 2020

Gọi chữ số hàng chục là x \(\left(0< x\le9\right)\)

      chữ số hàng dơn vị là y \(\left(0\le y\le9\right)\)

Ta có ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị 13 đơn vị

\(\Rightarrow3x-y=13\left(1\right)\)

 Nếu viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới (có hai chữ số) nhỏ hơn số cũ 9 đơn vị.

\(\Rightarrow xy-yx=9\Leftrightarrow10x+y-10y-x=9\)

                               \(\Leftrightarrow9x-9y=9\)

                               \(\Leftrightarrow x-y=1\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}3x-y=13\\x-y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x=12\\x-y=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=6\left(TM\right)\\y=5\left(TM\right)\end{cases}}\)

Vậy số cần tìm là \(65\)

Học tốt

11 tháng 5 2020

ĐK \(\frac{-11}{5}\le x\le6\)

Ta có: \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)

\(\Leftrightarrow\left(\sqrt{5x+11}-6\right)-\left(\sqrt{6-x}-1\right)+\left(x-5\right)\left(5x+11\right)=0\)

\(\Leftrightarrow\frac{5\left(x-5\right)}{\sqrt{5x+11}+6}+\frac{x-5}{\sqrt{6-x}+1}+\left(x-5\right)\left(5x+11\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left[\frac{5}{\sqrt{5x+11}+6}+\frac{1}{\sqrt{6-x}}+5x+11\right]=0\)

\(\Leftrightarrow x=5\)(Do \(\frac{5}{\sqrt{5x+11}+6}+\frac{1}{\sqrt{6-x}}+5x+11>0\)với \(\frac{-11}{5}\le x\le6\)

Vậy pt đã cho có nghiệm duy nhất x=5