giúp mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{2}x^2=3x-2\)
=>\(-x^2=6x-4\)
=>\(x^2+6x-4=0\)
=>\(\left(x+3\right)^2-13=0\)
=>\(\left(x+3\right)^2=13\)
=>\(\left[{}\begin{matrix}x+3=\sqrt{13}\\x+3=-\sqrt{13}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{13}-3\\x=-\sqrt{13}-3\end{matrix}\right.\)
Thay \(x=\sqrt{13}-3\) vào y=3x-2, ta được:
\(y=3\left(\sqrt{13}-3\right)-2=3\sqrt{13}-11\)
Thay \(x=-\sqrt{13}-3\) vào y=3x-2, ta được:
\(y=3\left(-\sqrt{13}-3\right)-2=-3\sqrt{13}-11\)
Vậy: (P) cắt (d) tại \(C\left(\sqrt{13}-3;3\sqrt{13}-11\right);D\left(-\sqrt{13}-3;-3\sqrt{13}-11\right)\)
b: Thay x=-4 vào (P), ta được:
\(y=-\dfrac{1}{2}\cdot\left(-4\right)^2=-\dfrac{1}{2}\cdot16=-8\)
Vậy: A(3;1); B(-4;-8)
Thay x=3 và y=1 vào (d'), ta được:
\(3\cdot a+b=1\)(1)
Thay x=-4 và y=-8 vào (d'), ta được:
\(a\cdot\left(-4\right)+b=-8\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}3a+b=1\\-4a+b=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7a=9\\3a+b=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=\dfrac{9}{7}\\b=1-3a=1-\dfrac{27}{7}=-\dfrac{20}{7}\end{matrix}\right.\)
a: Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{ABM}\) là góc tạo bởi tiếp tuyến BA và dây cung BM
\(\widehat{BNM}\) là góc nội tiếp chắn cung BM
Do đó: \(\widehat{ABM}=\widehat{BNM}\)
Xét ΔABM và ΔANB có
\(\widehat{ABM}=\widehat{ANB}\)
\(\widehat{BAM}\) chung
Do đó: ΔABM~ΔANB
=>\(\dfrac{AB}{AN}=\dfrac{AM}{AB}\)
=>\(AB^2=AM\cdot AN\)
a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)
nên ABOC là tứ giác nội tiếp
b: Xét (O) có
\(\widehat{NBA}\) là góc tạo bởi tiếp tuyến BA và dây cung BN
\(\widehat{BMN}\) là góc nội tiếp chắn cung BN
Do đó: \(\widehat{NBA}=\widehat{BMN}\)
mà \(\widehat{BMN}=\widehat{KAN}\)(hai góc so le trong, BM//AC)
nên \(\widehat{KAN}=\widehat{KBA}\)
Xét ΔKAN và ΔKBA có
\(\widehat{KAN}=\widehat{KBA}\)
\(\widehat{AKN}\) chung
Do đó: ΔKAN~ΔKBA
=>\(\dfrac{KA}{KB}=\dfrac{KN}{KA}\)
=>\(KA^2=KB\cdot KN\)(1)
c: Xét (O) có
\(\widehat{KCN}\) là góc tạo bởi tiếp tuyến CK và dây cung CN
\(\widehat{CBN}\) là góc nội tiếp chắn cung CN
Do đó: \(\widehat{KCN}=\widehat{CBN}=\widehat{KBC}\)
Xét ΔKCN và ΔKBC có
\(\widehat{KCN}=\widehat{KBC}\)
\(\widehat{CKN}\) chung
Do đó: ΔKCN~ΔKBC
=>\(\dfrac{KC}{KB}=\dfrac{KN}{KC}\)
=>\(KC^2=KB\cdot KN\left(2\right)\)
Từ (1) và (2) suy ra KA=KC
=>K là trung điểm của AC
ΔOCA vuông tại C
=>\(CO^2+CA^2=OA^2\)
=>\(CA^2=\left(3R\right)^2-R^2=8R^2\)
=>\(CA=R\cdot2\sqrt{2}\)
=>\(KA=R\sqrt{2}\)
d: Gọi giao điểm của MN và OE là I, giao điểm của BC và OA là H
Xét (O) có
EM,EN là các tiếp tuyến
Do đó: EM=EN
=>E nằm trên đường trung trực của MN(3)
Ta có: OM=ON
=>O nằm trên đường trung trực của MN(4)
Từ (3) và (4) suy ra OE là đường trung trực của MN
=>OE\(\perp\)MN tại I và I là trung điểm của MN
Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(5)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(6)
Từ (5),(6) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H
Xét ΔOBA vuông tại B có BH là đường cao
nên \(OH\cdot OA=OB^2=R^2\left(7\right)\)
Xét ΔONE vuông tại N có NI là đường cao
nên \(OI\cdot OE=ON^2\left(8\right)\)
Từ (7) và (8) suy ra \(OH\cdot OA=OI\cdot OE\)
=>\(\dfrac{OH}{OI}=\dfrac{OE}{OA}\)
Xét ΔOHE và ΔOIA có
\(\dfrac{OH}{OI}=\dfrac{OE}{OA}\)
\(\widehat{HOE}\) chung
Do đó: ΔOHE~ΔOIA
=>\(\widehat{OHE}=\widehat{OIA}=90^0\)
=>\(\widehat{OHE}=\widehat{OHB}=90^0\)
=>H,B,E thẳng hàng
mà B,H,C thẳng hàng
nên E,B,C thẳng hàng
Lời giải:
A. Khẳng định này sai do khi $y=0$ thì $2x=4+y=4\Rightarrow x=2$. PT có nghiệm $(x,y)=(2,0)$
B. Sai. PT có nghiệm, chả hạn $(x,y)=(2,0)$
C. Đúng. $x=\frac{y+4}{2}$. Với $y$ là số thực bất kỳ thì ta luôn có $x$ tương ứng.
D. Sai. $2x-y=4\Rightarrow 2x=y+4$
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ nhanh hơn nhé.
a: Thay m=-1 vào phương trình, ta được:
\(x^2-2\left(-1-1\right)x+\left(-1\right)+1=0\)
=>\(x^2+4x=0\)
=>x(x+4)=0
=>\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
b: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m+1\right)\)
\(=4\left(m^2-2m+1\right)-4\left(m+1\right)\)
\(=4\left(m^2-3m\right)\)
Để phương trình có hai nghiệm thì Δ>=0
=>m^2-3m>=0
=>m(m-3)>=0
=>\(\left[{}\begin{matrix}m>=3\\m< =0\end{matrix}\right.\)
Theo Vi-et, ta có:
\(x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right);x_1x_2=m+1\)
\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=4\)
=>\(\dfrac{x_1^2+x_2^2}{x_1x_2}=4\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2=4x_1x_2\)
=>\(\left(2m-2\right)^2-6\left(m+1\right)=0\)
=>\(4m^2-8m+4-6m-6=0\)
=>\(4m^2-14m-2=0\)
=>\(\left[{}\begin{matrix}m=\dfrac{7+\sqrt{57}}{4}\left(nhận\right)\\m=\dfrac{7-\sqrt{57}}{4}\left(nhận\right)\end{matrix}\right.\)
Pt: \(x^2+5x+2=0\)
Theo vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-5}{1}=-5\\x_1x_2=\dfrac{2}{1}=2\end{matrix}\right.\)
a) \(x^2_1+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-5\right)^2-2\cdot2=25-4=21\)
b) \(x_1^3+x_2^3=\left(x_1+x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\right]\)
\(=\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=\left(-5\right)\cdot\left[\left(-5\right)^2-3\cdot2\right]=-95\)
c) \(\left|x_1-x_2\right|=\sqrt{\left|x_1-x_2\right|^2}=\sqrt{x_1^2+x_2^2-2\left|x_1x_2\right|}\)
\(=\sqrt{\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|}=\sqrt{\left(-5\right)^2-2\cdot2-2\cdot\left|2\right|}=\sqrt{17}\)
d) \(x_1^2x_2^3+x_2^2x_1^3=x_1^2x_2^2\left(x_1+x_2\right)=\left(x_1x_2\right)^2\cdot\left(x_1+x_2\right)=2^2\cdot\left(-5\right)=-20\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=2\end{matrix}\right.\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-5\right)^2-2.2=21\)
\(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(-5\right)^3-3.2.\left(-5\right)=-95\)
\(\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{\left(-5\right)^2-4.2}=\sqrt{17}\)
\(x_1^2x_2^3+x_1^3x_2^2=\left(x_1x_2\right)^2\left(x_1+x_2\right)=2^2.\left(-5\right)=-20\)