K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

Áp dụng bđt cô si ta có : \(a^2+bc\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)\(< =>\frac{a}{a^2+bc}\le\frac{1}{2\sqrt{bc}}\)

Tương tự và cộng theo vế ta được \(LHS\le\frac{1}{2}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)

Ta sẽ chứng minh bđt phụ sau\(\frac{1}{\sqrt{xy}}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Ta thấy  \(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}< =>\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\ge\frac{1}{\sqrt{xy}}\)

Áp dụng bđt phụ trên ta có \(\frac{1}{2}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\le\frac{1}{2}\left[\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\right]\)

\(=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{\frac{1}{2}\left(ab+bc+ca\right)}{abc}\le\frac{\frac{1}{2}abc}{abc}=\frac{1}{2}\)(đpcm)

Dấu "=" xảy ra \(< =>a=b=c=3\)

bài này quan trọng là tìm đc cái bđt phụ đó thôi bạn

Áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Ta Có \(\frac{a}{a^2+bc}\le\frac{a}{4}.\left(\frac{1}{a^2}+\frac{1}{bc}\right)\)  và \(a^2+b^2+c^2\le abc\)

\(=>\frac{a}{a^2+bc}\le\frac{1}{4}.\left(\frac{1}{a}+\frac{a^2}{a^2+b^2+c^2}\right)\)

Tương tự các cái khác ta có

\(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{1}{4}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right)\)

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}\le\frac{a^2+b^2+c^2}{abc}\le1\)

\(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{1}{2}\left(dpcm\right)\)Dấu = xảy ra <=> a=b=c=3 "_"

Học tốt

6 tháng 12 2021

ABC=90

7 tháng 12 2021

a,Ta có góc ABC =góc BAC=góc BCA=60(ABC là Δ đều ) =>BPA=60
Xét ΔBAQ và ΔBAP có 

góc A chung 

góc ABQ=góc BPA(60)

=> ΔBAQ~ΔBPA(g.g)

=>BA/PA=AQ/AB

=>BA2=AP.AQ mà AB=BC

=>BC2=AP.AQ(đpcm ) 

b,trên đoạn PA lây điểm M sao cho PM=PB thì ta có Tam giác PMB là tam giác đều 

vì góc ACB=60=PBM=>ABM=PBC

=> tam giác ABM = tam giác CBP(c.g.c)=> AM=PC

=>PB+PC==PM+AM=PA

 

6 tháng 12 2021

CH=2R =90

7 tháng 12 2021

xét jfnfjdmemekekd

6 tháng 12 2021

Xét đg tròn tâm O đg kính AB tại D

7 tháng 12 2021

Vì góc ACB là có nội tiếp chắn nửa đường tròn của (O)

=> góc ACB= 90 độ

Xét (I) có góc MCN là góc nội tiếp chắn cung MN

mà góc MCN= 90 độ

=> MN là đường kính của (I)

=> 3 điểm M,I,N thẳng hàng

b) vì Δ CIN cân tại I( IC=IN=R)

=> góc ICN= góc INC

lại có Δ COB cân tại O(OC=OB=R)

=> góc OCB= góc OBC

=> góc INC= góc OBC ( cùng = góc OCB)

mà 2 góc này ở vị trí đồng vị của 2 đường thẳng MN và AB

=> MN // AB

lại có ID vuông góc với AB

=> ID vuông góc với MN( đpcm)

 

6 tháng 12 2021

BHA=90 BHB=90

 

7 tháng 12 2021

ta có góc CBM là góc nội tiếp chắn cung CM

         góc MBA là góc nội tiếp chắn cung MA

mà cung CM= cung MA( vì M là điểm chính giữa của cung CA)

=> góc CBM= góc MBA

hay BM là tia phân giác của góc CBA

CM tương tự ta có: AN là tia phân giác của góc CAB

xét tam giác CAB có

2 tia phân giác BM và AN cắt nhau tại I

=> I là tâm đường tròn nội tiếp tam giác CAB

=> CI là tia phân giác của góc ACB(đpcm)

 

11 tháng 11 2021

loading...

 

11 tháng 11 2021

loading...  

a) Trong tam giác OIK có:

|OK  OI| < IK < |OK + OI| hay ∣R−r∣<IK<∣R+r∣Rr<IK<R+r.

Vậy hai đường tròn (I) và (K) luôn cắt nhau.
b) Dễ thấy tứ giác OMCN là hình chữ nhật (Tứ giác có 3 góc vuông). 
Mà OM = OI + IM = OI + OK;

      ON = OK + KN = OK + OI.
Vậy OM = ON hay hình chữ nhật OMCN là hình vuông.
c) Gọi giao điểm của BK và MC là L và giao điểm của AB với MC là P.
Tứ giác IBKO là hình chữ nhật. Suy ra IB = OK.
Tứ giác MLBI là hình vuông nên ML = BI, BL = OK.
Từ đó suy ra ΔBLP=ΔKOIΔBLP=ΔKOI.  Vì vậy LP = OI.
Suy ra MP = ON = MC. Hay điểm C trùng với P.
Suy ra ba điểm A, B, C thẳng hàng.
d) Nếu OI + OK = a (không đổi) thì OM = MC = a không đổi. Suy ra điểm C cố định.
Vậy đường thẳng AB luôn đi qua điểm C cố định.

11 tháng 11 2021

loading...

 

 

 

11 tháng 11 2021

loading...  loading...  

11 tháng 11 2021

loading...

 

11 tháng 11 2021

loading...