K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2021
Đó nhá. Nnnjjahihi

Bài tập Tất cả

19 tháng 5 2023

m=3  

21 tháng 3 2021

b,

Trước tiên để pt có hai nghiệm phân biệt thì:

Δ=22(m+2)>0m<2Δ′=22−(m+2)>0⇔m<2

Áp dụng định lý Viete với $x_1,x_2$ là hai nghiệm của pt ta có:

{x1+x2=4x1x2=m+2{x1+x2=4x1x2=m+2

Khi đó:

x21+x22=3(x1+x2)x12+x22=3(x1+x2)

(x1+x2)22x1x2=3(x1+x2)⇔(x1+x2)2−2x1x2=3(x1+x2)

422(m+2)=3.4⇔42−2(m+2)=3.4

m+2=2m=0⇔m+2=2⇒m=0 (thỏa mãn)

Vậy m=0

19 tháng 5 2023

Đáp số: �=−3m=3

21 tháng 3 2021

a, m=-1

\(\Rightarrow x^2+4x+2+1=0\)

\(\Rightarrow x^2+x+3=0\)

\(\Rightarrow\Delta=1^2-4.1.3\)

\(=-11\)<0

\(\Rightarrow\) pt vô nghiệm

21 tháng 3 2021

\(x^2+x+m-2=0\)

\(a,m=0\)

\(\Rightarrow x^2+x-2=0\)

\(\Rightarrow\hept{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy m=0 thì pt có 2 nghiệm x=1 và x=-2

21 tháng 3 2021

a, Thay m = 0 vào phương trình trên ta được : 

\(x^2+x-2=0\)

Ta có : \(\Delta=1+8=9\)

\(x_1=\frac{-1-3}{2}=-2;x_2=\frac{-1+3}{2}=1\)

Vậy m = 0 thì x = -2 ; x = 1 

b, Theo Vi et \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-1\\x_1x_2=\frac{c}{a}=m-2\end{cases}}\)

mà \(\left(x_1+x_2\right)^2=1\Leftrightarrow x_1^2+x_2^2=1-2x_1x_2=2m-3\)

hay bất phương trình trên tương đương : 

\(2m-3-3\left(m-2\right)< 1\)

\(\Leftrightarrow2m-3-3m+6< 1\Leftrightarrow-m+3< 1\)

\(\Leftrightarrow-m< -2\Leftrightarrow m>2\)

7 tháng 3 2022

a, \(\Delta\)' =(m+3)\(^2\)-(m\(^2\)+6m)=m\(^2\)+6m+9-m\(^2\)-6m=9>0 với mọi m .Pt luôn có 2 no pb

b, Áp dụng hệ thức vi-ét có: x\(_1\)+x\(_2\)=-2(m+3)    ;   x\(_1\)x\(_2\)=m\(^2\)+6m     (I)

Để (2x\(_1\)+1)(2x\(_2\)+1)=13\(\Leftrightarrow\) 4x\(_1\)x\(_2\)+2(x\(_1\)+x\(_2\))+1=13       (*)

Thay (I) vào (*) có : 4(m\(^2\)+6m)-4(m+3)+1=13\(\Leftrightarrow\)4m\(^2\)+20m-24=0\(\Leftrightarrow\)m=1; m=-6

19 tháng 5 2023

Đáp số:  �=1;�=−6m=1;m=6

21 tháng 3 2021

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=1\end{cases}}\)

mà \(\left(x_1+x_2\right)^2=m^2\Leftrightarrow x_1^2+x_2^2=m^2-2x_1x_2=m^2-2\)

hay \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)

\(\Leftrightarrow x_1^2+2x_1+1+x_2^2+2x_2+1=2\)

\(\Leftrightarrow\left(x_1^2+x_2^2\right)+2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow m^2-2+2m=0\)

Ta có : \(\Delta=4+8=12\)

\(x_1=\frac{-2-\sqrt{12}}{2};x_2=\frac{-2+\sqrt{12}}{2}\)

15 tháng 5 2021

m<-2hoặcm>2

Ta có: m2+2m-2=0<=>(m+1)2=3

<=>m=-1+\(\sqrt{3}\) (loại) ;      m=-1-\(\sqrt{3}\) (TM)