gieo một con xúc sắc cân đối và đồng chất . Gọi Alà biến cố gieo được mặt 4 chấm. Xác suất của biến cố A là
A. P(A)=1/3
B.P(A)= 1/6
C.P(A)=2/3
D.P(A)= 1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác ABC và tam giác HBA, có
góc B chung
góc BAC = góc AHB (=90o)
=> tg ABC ~ tg HBA (g-g)
=>AB/BC =HB/AB ( tỉ số đồng dạng)
b) xét tg ABC có
BC2 = AB2 +AC2 ( định lí Pythagore)
BC^2 = 9^2 + 12^2
BC^2 = 81 + 144
BC = căn 225
=>BC = 15 cm
diện tích tg ABC là
S = AB.AC = (9.12):2 = 54 cm2
chiều dài AH là
AH = (S : BC).2= 9 cm
c) có: AB/BC =HB/AB(cmt)
=> AB2=HB.BC (đpcm)
cho mình xin ý kiến nhá :333
Hai đường thẳng đã cho song song khi:
\(\left\{{}\begin{matrix}2-3m=2\\5\ne5\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn yêu cầu
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACB}\) chung
Do đó: ΔABC~ΔHAC
=>\(\dfrac{CA}{CH}=\dfrac{CB}{CA}\)
=>\(CA^2=CH\cdot CB\)
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔHAB~ΔHCA
=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
c:
ΔABC vuông tại A
=>\(CA^2+AB^2=CB^2\)
=>\(CB=\sqrt{18^2+24^2}=30\left(cm\right)\)
Xét ΔCAB có CD là phân giác
nên \(\dfrac{DA}{AC}=\dfrac{DB}{BC}\)
=>\(\dfrac{DA}{24}=\dfrac{DB}{30}\)
=>\(\dfrac{DA}{4}=\dfrac{DB}{5}\)
mà DA+DB=AB=18cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DA}{4}=\dfrac{DB}{5}=\dfrac{DA+DB}{4+5}=\dfrac{18}{9}=2\)
=>\(DA=4\cdot2=8\left(cm\right)\)
a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó ΔHFB~ΔHEC
=>\(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)
=>\(HF\cdot HC=HB\cdot HE\)
b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{EAB}\) chung
Do đó: ΔAEB~ΔAFC
=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
=>\(AE\cdot AC=AF\cdot AB\)
a: Xét ΔCHA vuông tại H và ΔCAB vuông tại A có
\(\widehat{HCA}\) chung
Do đó: ΔCHA~ΔCAB
=>\(\dfrac{CH}{CA}=\dfrac{CA}{CB}\)
=>\(CH\cdot CB=CA^2\)
b: Xét ΔBAI và ΔBCD có
\(\widehat{BAI}=\widehat{BCD}\left(=90^0-\widehat{HAC}\right)\)
\(\widehat{ABI}=\widehat{CBD}\)
Do đó: ΔBAI~ΔBCD
Ta có: \(\widehat{ADI}+\widehat{ABD}=90^0\)(ΔABD vuông tại A)
\(\widehat{HIB}+\widehat{HBI}=90^0\)(ΔHBI vuông tại H)
mà \(\widehat{ABD}=\widehat{HBI}\)
nên \(\widehat{ADI}=\widehat{HIB}\)
=>\(\widehat{ADI}=\widehat{AID}\)
=>ΔAID cân tại A
\(\dfrac{x+1}{2023}+\dfrac{x+3}{2021}=\dfrac{x+5}{2019}+\dfrac{x+7}{2017}\)
\(\Leftrightarrow\dfrac{x+1}{2023}+1+\dfrac{x+3}{2021}+1=\dfrac{x+5}{2019}+1+\dfrac{x+7}{2019}+1\)
\(\Leftrightarrow\dfrac{x+2024}{2023}+\dfrac{x+2024}{2021}=\dfrac{x+2024}{2019}+\dfrac{x+2024}{2027}\)
\(\Leftrightarrow\left(x+2024\right)\left(\dfrac{1}{2023}+\dfrac{1}{2021}-\dfrac{1}{2019}-\dfrac{1}{2017}\right)=0\)
\(\Leftrightarrow x+2024=0\)
\(\Leftrightarrow x=-2024\)
Chọn B