Tìm min:
a) A = \(\dfrac{3x^2-6x+17}{x^2-2x+5}\)
b) B = \(\dfrac{2x^2-16x+41}{x^2-8x+22}\)
c) D = \(\dfrac{x^2-4x+1}{x^2}\)
d) \(\dfrac{27-12x}{x^2+y}\)
e) H = \(\dfrac{x^2+x+1}{\left(x+1\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(5-x\right)^2+\left(x+5\right)^2-2\cdot\left(x+5\right)\cdot\left(x-5\right)\\=\left(x-5\right)^2-2\cdot\left(x+5\right)\cdot\left(x-5\right)+\left(x+5\right)^2\\ =\left(x-5-x-5\right)^2\\ =\left(-10\right)^2\\ =100\)
\(a,\left(9x^2y^3+6x^3y^2-4xy^2\right):3xy^2\\ =9x^2y^3:3xy^2+6x^3y^2:3xy^2-4xy^2:3xy^2\\ =3xy+2x^2-\dfrac{4}{3}\\ b,\dfrac{1}{2}xy\left(x^5-y^3\right)-x^2y\left(\dfrac{1}{4}x^4-y^3\right)\\ =\dfrac{1}{2}xy\cdot x^5-\dfrac{1}{2}xy\cdot y^3-x^2y\cdot\dfrac{1}{4}x^4+x^2y\cdot y^3\\ =\dfrac{1}{2}x^6y-\dfrac{1}{2}xy^4-\dfrac{1}{2}xy^4-\dfrac{1}{4}x^6y+x^2y^4\\ =\dfrac{1}{4}x^6y-\dfrac{1}{2}xy^4+x^2y^4\)
Cậu ơi thuộc CD vs cái nào nữa k hay M vs N thuộc mỗi CD thôi ?
`a, A = 2xy + 1/2x(2x - 4y + 4) - x(x+2)`
`= 2xy + 1/2(2x^2-4xy+4x) - x^2 - 2x`
`= 2xy + (x^2 - 2xy + 2x) - x^2 - 2x`
`= 2xy + x^2 - 2xy + 2x - x^2 - 2x`
`= 0`
Vậy: Biểu thức `A` không phụ thuộc với giá trị biến `x`
`b, B = (2x - 1)(2x + 1) - (2x-3)^2 - 12`
`= (4x^2 - 1) - (4x^2 - 12x + 9)-12`
`= 4x^2 - 1 - 4x^2+ 12x - 9 - 12`
`= 12x -22`
`c,C = (x-1)^2 - (x + 2)(x^2 + x + 1) - x(x-2)(x+2)`
`= x^2 - 2x + 1 - (x^3 + x^2 + x + 2x^2 + 2x + 2) - x^3 + 4x`
`= x^2 - 2x + 1 - x^3 - 3x^2 - 3x - 2 -x^3+4x`
`= -2x^3 - 2x^2 - x-1`
Vậy: Biểu thức B, C vẫn phụ thuộc vào giá trị biến `x`
Em kiểm tra đề câu b, khả năng con số cuối là \(12x\) chư sko phải 12 đâu
a: Xét tứ giác BFGE có
BF//GE
BE//FG
Do đó: BFGE là hình bình hành
=>GE//BF và GE=BF
ta có: GE//BF
F\(\in\)BA
Do đó: GE//AB và GE//AF
Ta có: GE=BF
BF=AF
Do đó: GE=AF
Xét tứ giác AFEG có
AF//GE
AF=GE
Do đó: AFEG là hình bình hành
b: Xét ΔCAB có
D,E lần lượt là trung điểm của CB,CA
=>DE là đường trung bình của ΔCAB
=>DE//AB và \(DE=\dfrac{AB}{2}=FB=FA\)
Ta có: DE//AB
EG//AB
mà DE,EG có điểm chung là E
nên D,E,G thẳng hàng
Ta có: DE=FB
GE=FB
Do đó: DE=EG
mà D,E,G thẳng hàng
nên E là trung điểm của DG
Ta có: DG=2DE
AB=2FB
mà DE=FB
nên DG=AB
Xét tứ giác AGBD có
AB//DG
AB=DG
Do đó: AGBD là hình bình hành
=>AG//BD và AG=BD
Ta có: AG//BD
D thuộc BC
Do đó: AG//DC
Ta có: AG=BD
BD=DC
Do đó: AG=CD
Xét tứ giác AGCD có
AG//CD
AG=CD
Do đó: AGCD là hình bình hành
=>CG=AD
a: Xét tứ giác BECD có
BE//CD
BD//CE
Do đó: BECD là hình bình hành
b: Xét tứ giác BDFC có
BD//FC
BC//DF
Do đó: BDFC là hình bình hành
=>BD=FC; BC=DF
Ta có: BECD là hình bình hành
=>BE=CD; BD=CE
Ta có: ABCD là hình bình hành
=>AB=CD; BC=AD
Ta có: AB=CD
CD=BE
Do đó: BE=BA
=>B là trung điểm của AE
Ta có: AD=BC
BC=DF
Do đó: AD=DF
=>D là trung điểm của AF
Ta có: BD=FC
BD=CE
Do đó: CF=CE
=>C là trung điểm của FE
Xét ΔAFE có
AC,FB,ED là các đường trung tuyến
Do đó: AC,FB,ED đồng quy
a: Ta có: \(AE=EB=\dfrac{AB}{2}\)
\(CF=DF=\dfrac{CD}{2}\)
mà AB=CD
nên AE=EB=CF=DF
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét tứ giác BEDF có
BE//DF
BE=DF
Do đó: BEDF là hình bình hành
=>BF//DE
Xét ΔABK có
E là trung điểm của AB
EI//KB
Do đó: I là trung điểm của AK
=>AI=IK
Xét ΔDIC có
F là trung điểm của DC
FK//DI
Do đó: K là trung điểm của IC
=>IK=KC
mà AI=IK
nên AI=IK=KC
Lời giải:
$x^2y-5y-8x-1=0$
$\Leftrightarrow y(x^2-5)=8x+1$
Hiển nhiên với $x$ nguyên thì $x^2-5\neq 0$
$\Rightarrow y=\frac{8x+1}{x^2-5}$
Để $y$ nguyên thì $8x+1\vdots x^2-5(1)$
$\Rightarrow x(8x+1)\vdots x^2-5$
$\Rightarrow 8x^2+x\vdots x^2-5$
$\Rightarrow 8(x^2-5)+x+40\vdots x^2-5$
$\Rightarrow x+40\vdots x^2-5(2)$
Từ $(1); (2)\Rightarrow 8(x+40)-(8x+1)\vdots x^2-5$
$\Rightarrow 319\vdots x^2-5$
$\Rightarrow x^2-5\in \left\{\pm 1; \pm 11; \pm 29; \pm 319\right\}$
$\Rightarrow x^2\in \left\{6; 4; 16; -6; 34; -24; 324; -314\right\}$
Do $x^2$ là scp nên $x^2\in \left\{4; 16; 324\right\}$
$\Rightarrow x\in \left\{\pm 2; \pm 4; \pm 18\right\}$
Đến đây bạn thay vào tìm giá trị $y$ tương ứng thôi.
`a) x^2-x+1`
`=(x^2-2*x*1/2+1/4)+3/4`
`=(x-1/2)^2+3/4>=3/4>0` với mọi x
`b)x^2-5x+7`
`=(x^2-2*x*5/2+25/4)+3/4`
`=(x-5/2)^2+3/4>=3/4>0` với mọi x
`c) -4x^2-2x-5`
`=-2(2x^2+x+5/2)`
`=-4(x^2+1/2x+5/4)`
`=-4[(x^2+2*x*1/4+1/16)+19/16]`
`=-4(x+1/4)^2-19/4<=-19/4<0` với mọi x
=> `-4x^2-2x-5>0` là sai