Cho ABC , qua trọng tâm của tam giác kẻ đường thẳng d sao cho B và C nằm cùng phía đối với d. Gọi AA’; BB’; CC’ là các đường vuông góc kẻ từ A, B, C đến đường thẳng d. CMR: AA’ = BB’ + CC’
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh nữ là x (bạn) (x > 0)
Bạn nữ thứ nhất quen 20 + 1 bn nam
Bạn nữ thứ 2 quen 20 + 2 bn nam
Bn nữ thứ 3 quen 20 + 3 bn nam
...
Bạn nữ thứ x quen 20 + x bạn nam, là tất cả các bạn nam
Ta có phương trình : x + 20 + x = 50
→x=15
Vậy số học sinh nữ là 15 bạn, số học sinh nam là 35 bạn/
hình thì chế tự vẽ nha
kéo dài BH cắt CA tại K
từ DH.DA=DB.DC
\(\Leftrightarrow\frac{DH}{DB}=\frac{DC}{DA}\)
từ đó suy ra \(\Delta BDH\)đồng dạng với \(\Delta ADC\left(c.g.c\right)\)
=>góc DAC= góc HBD=góc KBC
mà góc DAC+góc ACB=90 độ
=>góc KBC+góc KCB=90 độ
=>tam giác BKC vuông tại K
=>góc BKC=90 độ
=>BH là đường cao của tam giác ABC
=>H là trực tâm của tam giác ABC
=>đpcm
kéo dài BH cắt CA tại K
từ DH.DA=DB.DC
⇔DHDB =DCDA
từ đó suy ra ΔBDHđồng dạng với ΔADC(c.g.c)
=>góc DAC= góc HBD=góc KBC
mà góc DAC+góc ACB=90 độ
=>góc KBC+góc KCB=90 độ
=>tam giác BKC vuông tại K
=>góc BKC=90 độ
=>BH là đường cao của tam giác ABC
=>H là trực tâm của tam giác ABC
=>đpcm
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
a) Gọi T là giao điểm của phân giác góc A với MN.
Do DB = DN nên \(\widehat{DBN}=\widehat{BNB}\)
Lại có \(\widehat{BNB}=\widehat{NBC}\) (So le trong)
Vậy nên \(\widehat{DBN}=\widehat{NBC}\) hay BI là phân giác góc DBC. Tương tự DI là phân giác góc BDC.
Suy ra CI cũng là phân giác góc BCD.
Do ABCD là hình bình hành nên \(\widehat{BAD}=\widehat{BCD}\Rightarrow\widehat{BCK}=\frac{\widehat{BAD}}{2}=\widehat{KAT}\)
mà \(\widehat{BCK}=\widehat{CKD}\) (So le trong) nên \(\widehat{CKD}=\widehat{KAT}\)
Chúng lại ở vị trí đồng vị nên CK // AT (đpcm)
b) Ta thấy từ câu a suy ra \(\widehat{DKC}=\widehat{BCK}=\widehat{KCD}\)
Vậy enen KD = DC = AB (Vì ABCD là hình bình hành)
:a,nối E với D,ED là đường trung bình nên ED=4cm
MN là đường trung bình hình thang BEDC nên MN=(8+4):2=6
b,vì MI // ED và M là trung điểm BE => MI là đường trung bình ∆BED
MI=1/2 ED,tương tự ta có KN=MI=1/2 ED (*)
vì ED=1/2 BC mà ∆EDG∞∆IKG∞CBG(G là giao 2 tiếp tuyến)
nên IK=1/2 ED <=> kết hợp với(*)ta có KN=MI=IK=1/2ED
Bài2:gọi đoạn nối trung điểm 2 cạnh AB và AC của tứ giác ABCD là MN,ta có MN=1/2 BC,trong ∆BCD có BC<BD+CD nên MN< BD+CD(bất đẳng thức tam giác)
Bai3:gọi tứ giác đó là ABCD,MN là cạnh nối trung điểm,kéo dài AN giao DC tại E,ta có AB=CE ,nên ta có ∆ABN=∆CEN =>gocBAN=góc CEN.Mà 2 góc nằm ở vị trí so le trong nên AB // DC => ABCD là hình thang.
Bai4:a,kẻ BK // AD,ta có hình bình hành ABKD =>IE là hiệu 2 đáy,kẻ đường cao BH',ta có ∆BCH'=∆ADH,mà ∆BIE cân nên H' là trung điểm IE =>HD=1/2(DE-AB)
b,kẻ BG // với AC,ta có hình bình hành ABGC =>AB=CG
vì ABH'H là hình vuông=>AB=HH'=>HH'=CG mà H'C=DH nên ta có
HH'+H'C=CG+DH mà (HH'+H'C)+(CG+DH)=DG=DC+AB
=>HH'+H'C=HC=1/2(DC+AB)
Bài5:Từ M kẻ MM' vuông góc với d,ta có MM'//BB'//CC'
mà M là trung điểm BC nên MM' là đường trung bình hình thang BB'C'C,ta lại có O là trung điểm AM=>∆AA'O=∆MM'O nên AA'=MM'
ta có MM'=AA'=(BB'+CC'):2
Bài6:Kẻ MN//AB//DC =>MN=(7+3)/2=5 =>∆ANM và∆DNM cân tại N
góc AMN=(180độ-gócANM)/2
góc DMN=(180độ-gócDNM)/2
góc AMN+góc DMN=(180độ-gócANM+180độ-gócDNM)/2
=(360độ-180độ)/2=90độ=gócAMD=>AM vuông góc với DM
còn 3 bài cuối bác nào khỏe tay thì giúp cháu nó hộ em với,em mỏi tayquá rồi
Chi tiết thêm:
lâu lắm mới vào lại câu này
Bài7:từ C kẻ đường vuông góc với BE tại M
kéo dài CM giao AB tại N
Ta có ∆CME đồng dạng với ∆CAN (gg)
=>góc CEM= góc CNA
vì góc CEM= góc AEB (đối đỉnh)
=> góc CNA= góc AEB
=>∆CAN=∆BAE(góc nhọn,cạnh góc vuông,góc 90º)
=>AE=AN=AD
vì AN=AD
mà AK // CN
=> AK là đường trung bình hình thang CIDN
=>IK=KC
vừa làm trên học24 xong mà ko đưa dc link thôi nhai lại vậy :v
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{\sqrt{b^2+3}}+\frac{a^3}{\sqrt{b^2+3}}+\frac{b^2+3}{7\sqrt{7}}\)
\(\ge3\sqrt[3]{\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{a^3}{\sqrt{b^2+3}}\cdot\frac{b^2+3}{7\sqrt{7}}}=\frac{3a^2}{\sqrt{7}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{b^3}{\sqrt{c^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^2+3}{7\sqrt{7}}\ge\frac{3b^2}{\sqrt{7}};\frac{c^3}{\sqrt{a^2+3}}+\frac{c^3}{\sqrt{a^2+3}}+\frac{a^2+3}{7\sqrt{7}}\ge\frac{3c^2}{\sqrt{7}}\)
Cộng theo vế 3 BĐT trên ta có:
\(2P+\frac{a^2+b^2+c^2+9}{7\sqrt{7}}\ge\frac{3\left(a^2+b^2+c^2\right)}{\sqrt{7}}\)
\(\Rightarrow P\ge\frac{\frac{\frac{\left(a+b+c\right)^2}{3}+9}{7\sqrt{7}}-\frac{3\cdot\frac{\left(a+b+c\right)^2}{3}}{\sqrt{7}}}{2}\ge\frac{\frac{\sqrt{7}}{21}}{2}=\frac{\sqrt{7}}{42}\)
Xảy ra khi \(a=b=c=\frac{1}{3}\)
Có thiếu dấu . nào ko nhỉ :v, tự nhai lại nên vẫn thấy ngon :v
bài này
áp dụng cô si ta có
a³/b + ab ≥ 2a²
b³/c + bc ≥ 2b²
c³/a + ac ≥ 2c²
+ + + 3 cái lại
=> a³/b + b³/c + c³/a ≥ 2a² + 2b² + 2c² - ab - ac - bc
mặt khác ta có
ab + bc + ac ≤ a² + b² + c² (cái này chứng minh dễ dàng nhé)
thay vào
=> a³/b + b³/c + c³/a ≥ a² + b² + c² ≥ 1
=>minP = 1
dấu bằng xảy ra <=. a = b = c = 1/√3
( bài này sử dụng A + B ≥ 2C mà B ≤ C => A ≥ C)
k và kết bạn cho mình nha !!!
\(\Leftrightarrow a+b+c+3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{c}+\sqrt[3]{a}\right)=a+b+c\)
\(\Leftrightarrow3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{c}+\sqrt[3]{a}\right)=0\)
với \(\sqrt[3]{a}+\sqrt[3]{b}=0\Leftrightarrow a=-b\Leftrightarrow a^3+b^3=0\)
<=>a3+b3+c3=(a+b+c)3
cmtt với các trường hợp còn lại=>đpcm
⇔a+b+c+3(3√a+3√b)(3√b+3√c)(3√c+3√a)=a+b+c
⇔3(3√a+3√b)(3√b+3√c)(3√c+3√a)=0
với 3√a+3√b=0⇔a=−b⇔a3+b3=0
<=>a3+b3+c3=(a+b+c)3
cmtt với các trường hợp còn lại=>đpcm
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
Ta có \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\) \(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\) \(c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow\) a = -b hoặc b = -c hoặc c = -a
1) Nếu a = -b thì \(a^{2n+1}+b^{2n+1}=-b^{2n+1}+b^{2n+1}=0\)và \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}=\frac{1}{-b^{2n+1}}+\frac{1}{b^{2n+1}}=0\)
\(\Rightarrow\) \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}\)
Tương tự cho 2 trường hợp còn lại suy ra đpcm.
hãy đổi các lũy thừa và xét từng số một trong biểu thức để xem nó có phải là hợp số hay không và kết luận
Bạn không đọc được chỗ nào thì hỏi mình .
khó quá mình mới lớp 7 thôi