K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2020

                                             B A C H D E

Xét \(\Delta ABC\)vuông tại A, đường cao AH 

\(\Rightarrow\)Áp dụng hệ thức \(h^2=b^'c^'\)ta có: \(AH^2=HB.HC\)

\(\Rightarrow AH^4=\left(HB.HC\right)^2=HB^2.HC^2\)(1)

Xét \(\Delta ABH\) vuông tại H có đường cao HD

\(\Rightarrow\)Áp dụng hệ thức \(b^2=a.b^'\)ta có: \(HB^2=BD.AB\)(2)

Tương tự ta có: \(HC^2=EC.AC\)(3)

Xét \(\Delta ABC\)vuông tại A, đường cao AH

\(\Rightarrow\)Áp dụng hệ thức \(ah=bc\)ta có: \(AB.AC=AH.BC\)(4)

Từ (1), (2), (3) và (4) 

\(\Rightarrow AH^4=BD.AB.CE.AC=BD.CE.AB.AC=BD.CE.AH.BC\)

\(\Rightarrow\frac{AH^4}{AH}=\frac{BD.CE.AH.BC}{AH}\)

hay \(AH^3=BC.BD.CE\)( đpcm )

12 tháng 11 2020

\(A=\frac{2x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

a) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

b) \(=\frac{2x+\sqrt{3^2x}-3}{x-\sqrt{x}+2\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\frac{2x+3\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\frac{2x+3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{2x+3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{x-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\frac{2x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\frac{2+3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

c) Đến đây chịu á :'(

1 tháng 4 2017

Bài 1:

\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có: 

\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)

Tương tự cho 2 BĐT còn lại ta cũng có: 

\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)

Cộng theo vế 3 BĐT trên ta có: 

\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2

1 tháng 4 2017

Bài 2/

\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)

\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)

\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)

Dấu =  xảy ra khi \(a=b=c=1\)

11 tháng 11 2020

\(P=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}+\frac{1}{x+y+z}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x+y+z}\)

Áp dúng bất đẳng thức Cauchy-Schwarz và AM-GM, ta có

\(P\ge x+y+z+\frac{9}{x+y+z}+\frac{1}{x+y+z}\ge2\sqrt{\left(x+y+z\right).\frac{9}{x+y+z}}+\frac{1}{\sqrt{3\left(x^2+y^2+z^2\right)}}=\frac{19}{3}\)

Dấu "=" khi \(x=y=z=1\)

10 tháng 11 2020

Áp dụng BĐT AM-GM ta có: \(x^{\frac{3}{2}}+x^{\frac{3}{2}}+1\ge3x\)

\(\Rightarrow y=x^{\frac{3}{2}}-\frac{3x}{2}\ge\frac{-1}{2}\)

Đẳng thức xảy ra khi x=1

Theo trên ta có: \(\sqrt{\frac{a^3}{b^3}}\ge\frac{3}{2}.\frac{a}{b}-\frac{1}{2},\sqrt{\frac{b^3}{c^3}}\ge\frac{3}{2}.\frac{b}{c}-\frac{1}{2},\sqrt{\frac{c^3}{a^3}}\ge\frac{3}{2}.\frac{c}{a}-\frac{1}{2}\)

Cộng lại  ta được: \(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\ge\frac{3}{2}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-\frac{3}{2}\)

ta chỉ cần CM:

\(\frac{3}{2}\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-\frac{3}{2}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

BĐT này tương đương với: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)

đúng theo AM-GM. Đẳng thức xảy ra <=> a=b=c

22 tháng 2 2019

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)thì bài toán thành

\(x+y+z=2\) chứng minh rằng

\(\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge\frac{1}{2}\)

Trước hết ta chứng minh:

Ta có: \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge\frac{3x}{4}\)

\(\Leftrightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)

\(\Rightarrow VP\ge\left(x+y+z\right)-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)