K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2020

ta có \(\frac{11b^3-a^3}{ab+4b^2}+\frac{11c^3-b^3}{bc+4c^2}+\frac{11a^3-c^3}{ca+4a^2}=\frac{11-\left(\frac{a}{b}\right)^3}{\frac{a}{b}+4}\cdot b+\frac{11-\left(\frac{b}{c}\right)^3}{\frac{b}{c}+4}\cdot c+\frac{11-\left(\frac{c}{a}\right)^3}{\frac{c}{a}+4}\cdot a\)

khi a=b=c=1 ta thấy đẳng thức xảy ra

xét \(f\left(x\right)=\frac{11-x^3}{x+4}\)ta có \(\frac{11-x^3}{x+4}\le-x+3\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\ge0\forall x>0\)

thay x bởi a/b ta được \(\frac{11-\left(\frac{a}{b}\right)^3}{\frac{a}{b}+4}\le-\frac{a}{b}+3\Leftrightarrow\frac{11b^3-a^3}{ab+4b^2}\le-a+3b\)

tương tự \(\hept{\begin{cases}\frac{11c^3-b^3}{bc+4c^2}\le-b+3c\\\frac{11ba^3-c^3}{ac+4a^2}\le-c+3a\end{cases}}\)

cộng các bđt cùng chiều ta được

\(\frac{11b^3-a^3}{ab+4b^2}+\frac{11c^3-b^3}{bc+4c^2}+\frac{11a^3-c^3}{ac+4a^2}\le2\left(a+b+c\right)=6\)

25 tháng 7 2020

\(\frac{11b^3-a^3}{ab+4b^2}\le3b-a\)

23 tháng 7 2020

Gọi (a;b)=k (k thuộc N*)
=>a = k.m; b = k.n

(m;n)=1(1)

m>n(2)
=>[a;b]=kmn
Ta có: [a;b]+(a;b)=174
=>kmn+k=k(mn+1)=174
\(a+\frac{a+b}{2}=\frac{2a+a+b}{2}=\frac{3a+b}{2}=57\Rightarrow3a+b=57.2\Rightarrow3a+b=114\)

=>3km+kn=k(3m+n)=114
=>k(mn+1)-k(3m+n)=60
=>k chia hết cho 174,114 và 60. Kết hợp với k=ƯCLN(a;b)
=>k \(\in\)ƯCLN(174,114,60). =>k=6
=> a= 6m; b= 6n

=>6(mn+1) =174

\(6\left(mn+1\right)=174\\ mn+1=174:6\\ mn=29-1\\ mn=28\)

Kết hợp với (1) và (2) => m= 7,n= 4 hoặc m= 28,n= 1
=>a= 42,b= 24 hoặc a= 168,b= 6.
Thử lại, ta thấy a= 168,b= 6 là sai (trung bình cộng là 93). Vậy a= 42,b= 24.

Mình mới làm lần đầu nên có thể bị sai nhé!

23 tháng 7 2020

help me please nha

24 tháng 4 2018

a) +Xét tg ABH và tg ACH có
AB=AC ( tg ABC cân tại A) 
góc B= góc C (tg ABC cân tại A)
góc AHB= góc AHC=900 (AH là đường cao )
Suy ra: tg ABH= tg ACH
b)+ tg ABH=tg ACH (câu a) => góc BAH= góc CAH (2 góc tương ứng) (1)
+ Ta có: DH // AC (GT)
=> góc CAH= góc DHA ( 2 góc so le trong ) (2)
+ Từ (1) và (2) => góc BAH= góc DHA hay góc DAH= góc DHA 
Suy ra: tg HDA cân tại D => AD=AH
c) +HD// AC => góc DHB= góc ACH ( 2 góc đồng vị ) hay góc DHB= góc ACB
Mà góc ABC= góc ACB (tg ABC cân tại A)
Suy ra: góc DHB= góc ACB => tg DBH cân tại D
=> DB=DH. Mặt khác: AD = DH (câu b)
Suy ra: DB=DA => CD là đường trung tuyến của tg ABC (3)
+ tg ABH= tg ACH (câu a )=> HB=HC (2 cạnh tương ứng ) => AH là đường trung tuyến của tg ABC (4)
+Từ (3) và (4) => G là trọng tâm của tg ABC (CD cắt AH tại G)
Mà BE là đường trung tuyến của tg ABC=> BE đi qua G
Suy ra: B, E, G thẳng hàng
d) mk bt lm nhưng lại k bt cách trình bày thông cảm nha ^^


 

26 tháng 4 2018

câu d tương đương với

CM cvi tam giác ABC > AH+3x 2/3 BE = AH+BE+CD

Tương đương với bài toán chưngs minh độ dài 3 đường trung tuyến của 1 tam giác nhỏ hơn chu vi của tam giác đó

bài toán đấy b có thể tham khảo quyển nâng cao pt tập 2 

8 tháng 1 2017

\(\frac{P}{m-1}=\frac{m+n}{p}\) dk tồn tại  \(VT>0\Rightarrow m>1\)

\(\Leftrightarrow p^2=\left(m+n\right)\left(m-1\right)\)(*)

VT là bp số nguyên tố VP xẩy ra các trường hợp

TH1: p=(m+n)=(m-1)=> n=-1 (loại n tự nhiên)

TH2:  Một trong hai số phải =1 có m>1=> m+n>1

=> m-1=1=> m=2

\(\Rightarrow P^2=\left(n+2\right)\left(2-1\right)=n+2\Rightarrow dpcm\)

15 tháng 1 2017

VT là bp số nguyên tố vp xẩy ra các trường hợp

TH1: p={m+n}={m-1}=>n-1{loai n tu nhien}

TH2:mot trong 2 so phai =1 co m>1=>m+n>=>m-1=1=>m2

chúc bạn làm tốt

7 tháng 4 2017

Giả sử a,b,c,d khác nhau ta có

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\) 

\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)

\(< 1-\frac{1}{5}< 1\)(trái với giả thiết)

=> điều giả sử là sai => ĐPCM

7 tháng 4 2017

Giả sử a,b,c,d khác nhau, thì ta sẽ có:

 \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)

\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)

\(< 1-\frac{1}{5}< 1\) (trái với giả thiết)

= > điều giả sử sai = > ĐPCM

24 tháng 6 2020

a, \(P\left(x\right)=5x^3-3x+7-x\)

               \(=5x^3-4x+7\)

\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2\)

             \(=-5x^3-x^2+4x-5\)

Ta có \(P\left(x\right)+Q\left(x\right)=-x^2+2\)

         \(P\left(x\right)-Q\left(x\right)=10x^3+x^2-8x+12\)

b, \(P\left(x\right)+Q\left(x\right)=0\)

\(\Leftrightarrow-x^2+2=0\)

\(\Leftrightarrow-x^2=-2\)

\(\Leftrightarrow x^2=2=\left(\pm\sqrt{2}\right)^2\)

\(\Rightarrow x=\pm\sqrt{2}\)

Vậy \(x=\pm\sqrt{2}\)

24 tháng 6 2020

P(x) = 5x3 - 3x + 7 - x

        = 5x3 - 4x + 7

Q(x) = -5x3 + 2x - 3 + 2x - x2 - 2

        = -5x3 - x2 + 4x - 5

P(x) + Q(x) = ( 5x3 - 4x + 7 ) + ( -5x3 - x2 + 4x - 5 )

                   = 5x3 - 4x + 7 - 5x3 - x2 + 4x - 5

                   = -x2 + 2

P(x) - Q(x) = ( 5x3 - 4x + 7 ) - ( -5x3 - x2 + 4x - 5 )

                  = 5x3 - 4x + 7 + 5x3 + x2 - 4x + 5

                  = 10x3 + x2 - 8x + 12

Đặt H(x) = P(x) + Q(x)

=> H(x) = -x2 + 2

H(x) = 0 <=> -x2 + 2 = 0

              <=> -x2 = -2

              <=> x2 = 2

              <=> x = \(\pm\sqrt{2}\)

Vậy nghiệm của đa thức là \(\pm\sqrt{2}\)

22 tháng 6 2020

1) d) Ta có: \(\Delta\)KHC cân tại H 

=> HK = CK 

=> AB = AC = 2Ck = 2HK 

=> AB = 2 HK 

Ta có: 

Qua H kẻ đường thẳng // với HA cắt AB tại T 

Xét \(\Delta\)KHA và \(\Delta\)ATK có: 

AK chung 

^HKA = ^TAK ( so le trong ) 

^HAK = ^TKA ( so le trong ) 

=> \(\Delta\)KHA = \(\Delta\)ATK 

=> AT = HK và KT = HA 

=> AB = 2HK = 2AT

Khi đó: AH + BK = KT + BK > BT = AB + AT 

=> 2 ( AH + BK ) > 2 AB + 2AT = 2AB + AB = 3AB 

Vậy 2 ( AH + BK) > 3AB

23 tháng 6 2020

2)  M I D E A P Q B C H

a)

  • Xét \(\Delta\)ADC và \(\Delta\)ABE có: 

AD = AB ( \(\Delta\)ADB cân tại A ) 

AC = AE ( \(\Delta\)ACE cân tại E) 

^DAC = ^BAE ( vì ^DAC = ^DAB + ^BAC = 90o + ^BAC  ; ^BAE = ^BAC + ^CAE = ^BAC + 90o ) 

=> \(\Delta\)ADC = \(\Delta\)ABE (1)

=> CD = EB 

  •  Gọi P; Q lần lượt là giao điểm của DC và BA và BE

(1) => ^ADC = ^ABE => ^ADP = ^PBQ (2)

Xét \(\Delta\)APD và \(\Delta\)PQB 

có: ^APD + ^ADP + ^PAD = ^PQB + ^PBQ + ^QPB  = 180 độ ( tổng 3 góc  trong 1 tam giác ) 

mà ^ADP = ^PBQ (theo (2)) ; ^APD = ^QPB ( đối đỉnh) 

=> ^PQB = ^PAD = ^BAD = 90 độ  ( \(\Delta\)ABD vuông ) 

=> DC vuông BE 

b) Trên mặt phẳng bờ DE không chứa A, qua D kẻ tia Dx // AE. Trên Dx lấy điểm M sao cho DM = AE 

Gọi giao điểm của DE và MA là I

Dễ dàng chứng minh được: \(\Delta\)DIM = \(\Delta\)EIA  (3) 

=> DM = AE = AC 

Lại có: ^MDA + ^DAE = ^MDE + ^EDA + ^DAE = ^DEA + ^EDA + ^DAE = 180 độ 

mà ^DAE + ^BAC = 180 độ 

=> ^MDA = ^BAC 

Xét \(\Delta\)ABC và \(\Delta\)DAM có: AB = DA ; AC = DM ; ^BAC = ^ADM 

=> \(\Delta\)ABC = \(\Delta\)DAM 

=> ^DAM = ^ABC 

=> ^DAM + ^DAB + ^BAH = ^ABC + 90o + ^BAH = 180 độ 

=> M; I; A; H thẳng hàng 

=> AH cắt DE tại I 

(3) => ID = IE => I là trung điểm của DE 

Do vậy AH đi qua trung điểm của DE 

5 tháng 6 2017

Đặt Q(x)=P(x)-10x. Khi đó Q(1)=Q(2)=Q(3)=0

Vì vậy Q(x) chia hết cho (x-1)(x-2)(x-3). Q(x) là đa thức bậc 4 (do P(x) là đa thức bậc 4) nên Q(x)=(x-1)(x-2)(x-3)(x-r) và 

P(x)=(x-1)(x-2)(x-3)(x-r)+10x

P(12)=1200-990r

P(-8)=7840+990r

Vậy \(\frac{P\left(12\right)+P\left(-8\right)}{10}=1984\)

5 tháng 6 2017

Ta có:      \(P\left(1\right)=1+a+b+c+d=10\)
                \(P\left(2\right)=16+8a+4b+2c+d=20\)
                \(P\left(3\right)=81+27a+9b+3c+d=30\)
    và        \(P\left(12\right)=20736+1728a+144b+12c+d\)
                 \(P\left(-8\right)=4096-512a+64b-8c+d\)
suy ra   \(P\left(12\right)+P\left(-8\right)=24832+1216a+208b+4c+2d\)

Ta lại có:               \(100.P\left(1\right)-198.P\left(2\right)+100.P\left(3\right)\)     \(=100\left(1+a+b+c+d\right)-198\left(16+8a+4b+2c+d\right)+100\left(81+27a+9b+3c+d\right)\)
\(=100+100a+100b+100c+100d-3168-1584a-792b-396c-198d+8100+2700a+900b+300c+100d\)
\(=5032+1216a+208b+4c+2d\)

Mặt khác:                      \(100.P\left(1\right)-198.P\left(2\right)+100.P\left(3\right)\)
    \(=100\times10-198\times20+100\times30=40\)

Do đó:          \(5032+1216a+208b+4c+2d=40\)
       \(\Rightarrow\)\(1216a+208b+4c+2d=40-5032=-4992\)

Thế  \(1216a+208b+4c+2d=-4992\)  vào \(P\left(12\right)+P\left(-8\right)=24832+1216a+208b+4c+2d\)
ta được:    \(P\left(12\right)+P\left(-8\right)=24832-4992=19840\)

Vậy  \(\frac{P\left(12\right)+P\left(-8\right)}{10}=\frac{19840}{10}=1984\)

25 tháng 2 2020

p là số nguyên tố lớn hơn 3 nên p có hai dạng: 3k + 1 hoặc 3k - 1.

+) Xét p = 3k + 1

 *) Nếu d = 3a + 1 thì \(p+2d=3k+1+6a+2=3k+6a+3⋮3\)

Lại có: \(p+2d>3\)nên p + 2d là hợp số (vô lí)

 *) Nếu d = 3a + 2 thì \(p+d=3k+1+3a+2=3k+3a+3⋮3\)

Lại có: \(p+d>3\)nên p + d là hợp số (vô lí)

Vậy d chia hết cho 3 ở trong trường hợp này.

+) Xét p = 3k - 1

 *) Nếu d = 3m + 1 thì \(p+d=3k-1+3m+1=3k+3m⋮3\)

Lại có: \(p+d>3\)nên p + d là hợp số (vô lí)

 *) Nếu d = 3m + 2 thì \(p+2d=3k-1+6m+4=3k+6m+3⋮3\)

Lại có: \(p+2d>3\)nên p + 2d là hợp số (vô lí)

Ở trong th này, d cũng chia hết cho 3.

Vậy d chia hết cho 3

Măt khác: d chẵn vì p và p + d lẻ (do p;p+d nguyên tố ) nên d chia hết cho 6

Vậy \(d⋮6\left(đpcm\right)\)

14 tháng 7 2020

Assassin_7 sai chỗ là "Mâu thuẫn" chứ ko phải " Vô lí" nhé

12 tháng 7 2020

thx ban

21 tháng 4 2021

Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12