K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2015

Đây nè:

Gọi số phải tìm là n; số chính phương đó là a; gọi b là số tự nhiên mà n là lập phương của nó.

Ta thấy n chia hết cho 2 và 3 (vì số chính phương hay lập phương của một số tự nhiên đều là số tự nhiên) nên để n nhỏ nhất, ta chọn n = 2x.3y (x và y khác 0).

n : 2 = 2x.3y : 2 = 2x-1.3y = a2 suy ra x - 1 và y đều chia hết cho 2 hay đều là số chẵn.

n : 3 = 2x.3y : 3 = 2x.3y-1 = b3 suy ra x và y - 1 đều chia hết cho 3.

Từ x - 1 chia hết cho 2 và x chia hết cho 3, để nhỏ nhất ta chọn x = 3

Từ y chia hết cho 2 và y - 1 chia hết cho 3, để nhỏ nhất ta chọn y = 4

Vậy n = 23.34 = 648

            Số cần tìm là 648.

16 tháng 5 2015

mình hâm mộ tài năng học tập của : Đinh Tuấn Việt nhất trong online math

17 tháng 5 2015

Ta biết rằng một số và tổng các chữ số của nó có cùng số dư khi chia cho 9. Tổng các chữ số của x ; của 2x; của 3x  cộng lại là 1 + 2+ ……+ 9 = 45, chia hết cho 9, do đó tổng x + 2x + 3x cũng chia hết cho 9, tức là 6x chia hết cho  9 => x chia hết cho 3 

Do x có tận cùng bằng 2 nên 2x tận cùng bằng 4 và 3x tận cùng bằng 6

Gọi a và b là các chữ số hàng trăm, hàng chục của 3x thì \(a,b\in\left\{1;3;5;7;8;9\right\}\) (Trừ các số 2, 4, 6) mặt khác x chia hết cho3 nên 3x chia hết cho 9.

Tức là: abc chia hết cho 9 do đó a +b + 6 chia hết cho  9 chú ý : 4 \(\le\)a +b \(\le\) 17.

Nên a + b + 6 = 18 => a + b = 12 = 5 + 7 = 3 + 9 

Xét 4 trường hợp

3x = 576 => x = 192,  2x = 384 (đúng)

3x = 756 => x = 252, loại vì 3x và x trùng chữ số 5

3x = 396 => x = 132 loại vì 3x và x trùng chữ số 3

3x = 936 => x = 312 loại vì 3x và x trùng chữ số 3

tick dúng nha

30 tháng 4 2017

giang  ho dai ka coppy trong 28 đề thi ssg k sai  1 chữ

16 tháng 5 2015

Gọi số nhỏ nhất có 30 ước là A

Khi phân tích A ra thừa số nguyên tố A có dạng: A = ax.by.cz....

Số ước của A là: (x + 1)(y + 1)(z + 1).... = 8

Ta viết 9 dưới dạng tích của 1 hay nhiều thừa số lớn hơn 1 là 8 = 8 = 2.4

+) A có 1 thừa số nguyên tố.

=> A = a7 . Mà a nhỏ nhất nên ta chọn cơ số nhỏ nhất (số nguyên tố) => A = 128

+) A có 2 thừa số nguyên tố.

=> A = ax.b(giả sử x > = y không làm mất đi tính tổng quát của bài tóan)

Số ước của A là (x + 1)(y + 1) = 4

=> x + 1 = 4 => x = 3

=> y + 1 = 2 => x = 1

=> A = a3.b

Do A nhỏ nhất nên ta chọn số mũ lớn với cơ số nhỏ

=> A = 23.3 = 24

Cho mình ****

Mà A nhỏ nhất nên ta chọn

 

16 tháng 5 2015

Trả lời đi chứ, mình nghĩ phát là ra đáp số luôn nhưng không biết cách giải @@

16 tháng 5 2015

 

Gọi năm số tự nhiên đã cho là a1,a2,a3,a4,a5, ƯCLN( a1,a2,a3,a4,a5) là d. Ta có:
a1 = dk1 , a2 = dk1 , a3 = dk1 , a4 = dk4 , a5 = dk5
Nên: a1+a2+a3+a4+a5 = d(k1+ k2 + k3+ k4 + k5 )
Do đó: 156 = d(k1+ k2 + k3+ k4 + k5 )
 d là ước của 156
k1+ k2 + k3+ k4 + k5  5 nên 5d  156  d  31
156 = 22.3.13
Ước lớn nhất của 156 không vượt quá 31 là 26
 Giá trị lớn nhất của d là 26.
( xảy ra khi chẳng hạn a1=a2=a3=a4 = 26, a5 = 52 ).

15 tháng 8 2016

dung ko do

15 tháng 5 2015

11n + 2 + 122n + 1 = 121 . 11n + 12 . 144n

=(133 – 12) . 11n + 12 . 144n = 133 . 11n + (144n – 11n) . 12

Ta có: 133 . 11n chia hết 133;  144n – 11n chia hết (144 – 11)

\(\Rightarrow\) 144n – 11n chia hết 133 \(\Rightarrow\) 11n + 1 + 122n + 1

2 tháng 4 2017

k mk đi làm ơn 

mk đang bị âm điểm

15 tháng 5 2015

Giả sử p ; p+4 ; p+8 là ba số nguyên tố.

Ta thấy p \(\ne\) 2, vì nếu p = 2 thì p + 4 = 6 và p+  8 = 10 là hợp số.

Xét p = 3 thì 3; 17; 11 là bộ ba số nguyên tố mà hiệu của ba số liên tiếp bằng 4.

Xét p > 3 thì p có dạng 3k+1 hoặc 3k+2 (k \(\in\) N)   [kiến thức về số nguyên tố lớn hơn 3]

Loại p = 3k + 1 vì khi đó p + 8 = 3k + 1 + 8 = 3k + 8 = 3k + 3.3 = 3.(k+3) chia hết cho 3, là hợp số.

Loại p = 3k + 2 vì khi đó p + 4 = 3k + 2 + 4 = 3k + 6 = 3k + 3.2 = 3.(k + 2) chia hết cho 3, là hợp số.

Vậy chỉ có duy nhất bộ ba số nguyên tố 3; 7; 11 thỏa mãn đề bài.

Suy ra điều phải chứng minh.

15 tháng 5 2015

Bạn hỏi câu này, mọi người và O-l-M chọn câu trả lời của mình đi mà để mình còn có hứng giải tiếp !

15 tháng 5 2015

Ta chọn n=2^1999

Ta có:1+1/2+1/3+...+1/n=1+1/2+(1/3+1/22)+(1/5+1/6+1/7+1/2^3)+(1/9+...+1/2^4)+...+(1/2199​8+1+...+1/21999)>1+1/2+1/22.2+1/23.22+1/24.23+...+1/21999.21998=1+1/2.1999=1000,5>1000(đpcm)

7 tháng 2 2018

Số đó là 2^1999

14 tháng 5 2015

\(A=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+\frac{1}{2500}\)

\(A=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+\frac{1}{50^2}=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)\)(từ 2 đến 50 có 49 số nên có 49 số 1)

\(A=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)

22 tháng 1 2018

phải la 1- 1/2500

20 tháng 5 2015

Ta thấy :

9 x 7 =63

99 x 77 = 7623

999 x 777 = 776223

................

Rút ra quy luật ta có: \(\frac{999...9}{2013số}x\frac{777...7}{2013số}=\frac{777...7}{2012số}\frac{6}{1số}\frac{222...2}{2012số}\frac{3}{1số}\)

Tổng các chữ số m x n =7 x 2012 + 6 + 2 x 2012 + 3=38231

                           *** nha!

                              

13 tháng 5 2015

p=2 thì p^4+2 là hợp số

p=3 =>p^4+2=83 là số nguyên tố

với p>3 thì p có dang 3k+1 và 3k+2 thay vào chúng đều là hợp số

vậy p=3

14 tháng 5 2015

giả sử x = 2n + 2003, y = 3n + 1005 là các số chính phương

Đặt  2n + 2003 = k2        (1)      và  3n + 2005 = m2              (2)   (k, m \(\in\) N)

trừ theo từng vế của (1), (2) ta có: 

 n + 2 = m2 - k2

khử n từ (1) và (2)  =>  3k2  - 2m2 = 1999            (3)

từ (1)   =>  k là số lẻ . Đặt k = 2a + 1 ( a Z) . Khi đó : (3) <=> 3 (2a -1)  - 2m2 = 1999 

<=> 2m= 12a2 + 12a - 1996 <=> m2 = 6a2 + 6a - 998 <=> m2 = 6a (a+1) - 1000 + 2             (4)

vì a(a+1) chia hết cho 2 nên 6a (a+1) chia hết cho 4, 1000 chia hết cho 4 , vì thế từ (4) =>  m2 chia 4 dư 2, vô lý

vậy ko tồn tại các số nguyên dương n thỏa mãn bài toán