Cho một tam giác vuông có hai cạnh góc vuông lần lượt là 5 cm và 12 cm. Độ dài đường trung tuyến ứng với cạnh huyền của tam giác vuông đó là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
theo đề bài ta có AB=2AD
mà ABCD là hình bình hành ta lại có AB=CD=2AD
lại có E và F theo thứ tự là trung điễm của cạnh AB và CD
=>AE=EB=BC=CF=FD=DA=EF (1)
Theo tính chất hình bình hành ta có AB//CD hay AE//FC (vì E và F theo thứ tự là trung điễm của cạnh AB và CD nên E,F lần lượt thuộc ab và cd) (2)
từ 1 và 2 => AECF là hình bình hành (có 2 cạnh đối song song và bằng nhau)
b)
kẻ EF và DE cắt nhau tại M có
EF//AD
theo (1) ta có AE=FD=DA=EF
=>.Tứ giác AEFD là hình thoi
=> AF vuông góc với DE (2 đường chéo cắt nhau và vuông góc với nhau tại trung điểm của mỗi đường)
c) CM tứ giác EMFN là tứ giác nội tiếp...
( Mình chỉ làm được thế thôi, xin lỗi nhé!!)^^
tong 4 so chinh phuong le 1 la so chinh phuong
2 ko la so chinh phuong
tong 5 so chinh phuong le ko la so chinh phuong
\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+3=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}+3\)
\(\Leftrightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)\)
\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)(1)
Vì \(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\ne0\)(2)
Từ (1) và (2) \(\Rightarrow x+2009=0\)\(\Rightarrow x=-2009\)
Vậy \(x=-2009\)
1998 khi viết thành tổng của 3 số tự nhiên thì sẽ có 1 số chẵn
Tổng lập phương của chúng là số chãn chia hết 3
do đó tổng lập phương của 3 số tự nhiên chia hết cho 6
1998 khi viết thành tổng 3 số tự nhiên thì sẽ có ít nhất 1 số chẵn
Tổng lập phương của chúng là số chẵn và chia hết cho 3
Do đó tổng các lập phương của ba số tự nhiên đó chia hết cho 6
Nối H với I
+) Xét tam giác KHC có: I; P là trung điểm KC; HK => IP là đường trung bình của tam giác
=> IP // HC mà AH | HC nên IP | AH => IP là đường cao của tam giác AHI
+) Xét tam giác AHI có: HK; IP là 2 đường cao của tam giác ; HK cắt IP tại P
=> P là trực tâm của tam giác => AP là đường cao thứ ba => AP | HI (1)
+) Xét tam giác BCK có: I; H là trung điểm của KC; BC => IH là đường trung bình của tam giác
=> IH // BK (2)
(1)(2) => AP | BK
* Phần thuận:
+) Trong góc xOy vẽ tam giác OAD đều
=> góc OAB = AOD - BAD => góc OAB = 60o - BAD
Tam giác ABC đều => góc DAC = BAC - BAD => góc DAC = 60o - BAD
=> OAB = DAC
+) Xét tam giác AOB và ADC có: OA = AD (tam giác AOD đều); góc OAB = DAC ; AB = AC
=> tam giác AOB = ADC (c - g- c)
=> BOA = ADC ( 2 góc tương ứng)
góc BOA = 90o => góc ADC = 90o => CD | AD => C nằm trên đường thẳng d vuông góc với AD tại D
Do O;A cố định nên D cố đinh
=> C nằm trên đường thẳng d cố định
+) Giới hạn: Khi B trùng với O thì C trùng với D; Khi B di động trên Ox thì C di động trên d
* Phần đảo:
Lấy C' thuộc d . Vẽ góc C'AB' = 60o (B' thuộc Ox)
Ta chứng minh tam giác AB'C' đều
+) Tam giác ADC' = tam giác AOB' ( g- c-g) vì góc C'DA = B'OA (=90o) ; OA = AD ; góc OAB' = DAC'
=> AC' = AB' => tam giác AB'C' cân tại A
Mà có góc B'AC' = 60o nên tam giác AB'C' đều
Vậy .......
+) Xét tam giác ABC và HBA có: góc BAC = AHB (= 90o); góc ABC chung
=> tam giác ABC đồng dạng với tam giác HBA (g - g)
=> \(\frac{AB}{HB}=\frac{BC}{BA}\) => AB2 = HB.BC (1)
+) Xét tam giác ABI và EBA có: góc ABE chung; góc AIB = EAB (=90o)
=> Tam giác ABI đồng dạng với tam giác EBA (g- g)
=> \(\frac{AB}{EB}=\frac{BI}{BA}\) => AB2 = BI.BE (2)
Từ (1)(2) => HB.BC = BI.BE => \(\frac{BH}{BE}=\frac{BI}{BC}\)
+) Xét tam giác BHI và BEC có: góc CBE chung; \(\frac{BH}{BE}=\frac{BI}{BC}\)
=> tam giác BHI đồng dạng với tam giác BEC (c - g- c)
=> góc BHI = BEC (2 góc tương ứng)
+) Dễ có: BEC = 180o - BEA = 180o - 45o = 135o
=> góc BHI = 135o => góc IHC = 180o - 135o = 45o
+) Ta có góc IHA + IHC = AHC = 90o => góc IHA = 90o - IHC = 45o
Lấy M là điểm trên tia AF sao cho FM = AF. Khi đó ADMC là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường).
=> AD // CM => \(\widehat{ADF}=\widehat{FCM}=80^o\) (so le trong)
\(\widehat{BCM}=\widehat{BCF}+\widehat{FCM}=50^o+80^o=130^o\)
Vì ADMC là hình bình hành => AD = MC. Theo giả thiết AD = BC => MC = BC => Tam giác CMB cân tại C
=> \(\widehat{CBM}=\widehat{CMB}=\frac{180^o-130^o}{2}=25^o\)
BM cắt CD tại K. Xét tam giác BKC biết 2 góc là 50 và 25 độ => \(\widehat{BKC}=180-\left(50+25\right)=105^o\)
Trong tam giác ABM có EF là đường trung bình => EF // BM => \(\widehat{EFC}=\widehat{BKC}=105^o\) (hai góc đồng vị).
ĐS: \(\widehat{EFC}=105^o\)
a/b+c + b/c+a + c/a+b = 1
=> (a+b+c)(a/b+c + b/c+a + c/a+b = (a+b+c).1
=> a2/ b+c + a + b2/c+a + b + c2/a+b + c = a+b+c
=> a2/b+c + b2/c+a + c2/a+b = (a+b+c)-(a+b+c) = 0
đúng thì k cho mình nka
ĐK:\(a+b+c\ne0\)
Khi đó:\(\frac{a}{a+b}+\frac{b}{c+a}+\frac{c}{a+b}=1\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{a}{c+b}+\frac{b}{a+c}+\frac{c}{a+b}\right)=a+b+c\)
\(\Leftrightarrow\frac{\left(a+b+c\right)a}{c+b}+\frac{\left(a+b+c\right)b}{a+c}+\frac{\left(a+b+c\right)c}{a+b}=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+a+\frac{b^2}{c+a}+b+\frac{c^2}{a+b}+c=a+b+c\)
\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}=0\)
6,5 cm nha nb