Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Hàm số y=2024x−x2 nghịch biến trên khoảng nào sau đây?
Số điểm cực trị của hàm số y=34x3−2x2−x−3 là
Cho hàm số y=f(x) có bảng xét dấu đạo hàm như sau.
Mệnh đề nào sau đây đúng?
Hàm số nào sau đây có đồ thị như hình vẽ?
Đồ thị trong hình vẽ là đồ thị của hàm số nào dưới đây?
Cho hình lập phương ABCD.A1B1C1D1 có tâm O. Đẳng thức nào sau đây đúng?
Trong không gian với hệ tọa độ Oxyz, cho hình chữ nhật OKMN.
Tọa độ đỉnh M của hình chữ nhật là
Trong không gian Oxyz, cho vectơ a=2i+j−2k. Độ dài của vectơ a bằng
Trên khoảng (0;1) hàm số y=x3+x1 đạt giá trị nhỏ nhất tại
Số đường tiệm cận của đồ thị hàm số y=x2−42x2−3x−2 là
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ t là f(t)=45t2–t3,t=0,1,2,…,25. Nếu coi f(t) là hàm số xác định trên đoạn [0;25] thì đạo hàm f′(t) được xem là tốc độ truyền bệnh (người/ngày) tại thời điểm t. Xác định khoảng thời gian mà tốc độ truyền bệnh giảm?
Cho hàm số y=f(x) liên tục và có đồ thị trên đoạn [−2;4] như hình vẽ.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Trên đoạn [−2;4], đồ thị hàm số y=f(x) có 2 điểm cực trị. |
|
b) Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−2;2] là −2. |
|
c) Giá trị lớn nhất của hàm số y=f(x) trên đoạn [1;4] là −4. |
|
d) Hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−2;4] là 11. |
|
Ông An muốn xây một cái bể chứa nước lớn dạng một khối hộp chữ nhật không nắp có thể tích bằng 288 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500000 đồng/m2. Ba kích thước của bể được mô tả như hình vẽ dưới (a(m)>0,c(m)>0)
Nếu ông An biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất (Biết độ dày thành bể và đáy bể không đáng kể). Khi đó:
a) Diện tích các mặt cần xây là S=2a2+6ac. |
|
b) 2a2c=280. |
|
c) Diện tích các mặt cần xây nhỏ nhất là 216 m2. |
|
d) Chi phí thấp nhất để xây dựng bể đó là 108 triệu đồng. |
|
Một vật nặng O được kéo từ ba hướng như hình vẽ và chịu tác dụng của ba lực F1,F2,F3, có độ lớn lần lượt là 24 N, 12 N, 6 N. Biết góc tạo bởi hai lực F1,F2 là 120∘ và lực thứ ba vuông góc với hai lực đầu tiên.
Trong đó điểm D là đỉnh của hình bình hành OBDA và E là đỉnh của hình bình hành OCED.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) BO+BA=BD. |
|
b) OE=OA+OB+OC. |
|
c) Độ dài vectơ OD là 127. |
|
d) Độ lớn hợp lực tác dụng vào vật O là 613 N. |
|
Theo thống kê tại một nhà máy Z, nếu áp dụng tuần làm việc 40 giờ thì mỗi tuần có 100 công nhân đi làm và mỗi công nhân làm được 120 sản phẩm trong một giờ. Nếu tăng thời gian làm việc thêm 2 giờ mỗi tuần thì sẽ có 1 công nhân nghỉ việc và năng suất lao động giảm 5 sản phẩm/1 công nhân/1 giờ. Ngoài ra, số phế phẩm mỗi tuần ước tính là P(x)=495x2+120x, với x là thời gian làm việc trong một tuần (đơn vị: giờ). Nhà máy cần áp dụng thời gian làm việc mỗi tuần mấy giờ để số lượng sản phẩm thu được mỗi tuần là lớn nhất?
Trả lời: giờ.
Một nhà xuất bản nhận in 4 000 ấn phẩm. Nhà xuất bản có tất cả 14 máy in được cài đặt, hoạt động tự động và giám sát bởi 1 kĩ sư. Mỗi máy in có thể in được 30 ấn phẩm trong một giờ. Chi phí cài đặt máy in là 120 nghìn đồng/máy, chi phí giám sát là 90 nghìn đồng/giờ. Số máy in nhà xuất bản nên sử dụng để chi phí in là nhỏ nhất là bao nhiêu máy?
Trả lời:
Nếu một vật có khối lượng m (kg) thì lực hấp dẫn P (N) của Trái Đất tác dụng lên vật được xác định theo công thức: P=m.g, trong đó g là gia tốc rơi tự do có độ lớn g=9,8 m/s2. Một con khỉ có cân nặng 5 kg đang biểu diễn xiếc. Nó nắm tay vào dây để treo mình đứng yên như hình vẽ.
Khi dây ở vị trí cân bằng, tính độ lớn của lực căng dây T1, đơn vị N (làm tròn kết quả đến chữ số thập phân thứ nhất)
Trả lời:
Từ một tấm tôn hình chữ nhật có các kích thước là x(m), y(m) với x>1và y>1 và diện tích bằng 4m2, người ta cắt bốn hình vuông bằng nhau ở bốn góc rồi gập thành một cái thùng dạng hình hộp chữ nhật không nắp (như hình vẽ) có chiều cao bằng 0,5 m. Thể tích của thùng là hàm số V(x) trên khoảng (1;+∞). Đồ thị hàm số y=V(x)1 có bao nhiêu đường tiệm cận đứng?
Trả lời:
Cho hàm số y=f(x) xác định trên R và có bảng biến thiên như sau:
Hàm số y=g(x)=f3(x3+3x)+2024 có bao nhiêu điểm cực tiểu?
Trả lời:
Cho hàm số y=31x3+(m−1)x2−3x (m là tham số). Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên tập xác định?
Trả lời: