tìm số tự nhiên a nhỏ nhất biết khi chia a cho các số 5 7 11 thì được số dư lần lượt là 3 4 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số 59 đấy bạn ạ vì 59 chia cho 3 dư 2 chia 7 dư 3 chia 5 dư 4
Theo đề '' tao '' có :
a : 3 dư 2 => a + 1 \(⋮\)3 => a + 1 + 51 \(⋮\)3 => a + 52 \(⋮\)3
a: 5 dư 3 => a + 2 \(⋮\)5 => a + 2 + 50 \(⋮\)3 => a + 52 \(⋮\)5
a:7 dư 4 => a + 3 \(⋮\)7 => a + 3 + 49 \(⋮\)7 => a + 52 \(⋮\)7
a nhỏ nhất
=> a + 52 = BCNN ( 3 , 5 , 7 )
Ta có :
3 = 3
5 = 5
7 = 7
=> BCNN ( 3 , 5 , 7 ) = 3 . 5 . 7 = 105
=> a = 105 - 52 = 53
Vậy a = 53
Khi chia \(a\)lần lượt cho \(5,7,11\)thì được số dư là \(3,4,6\)
suy ra \(2a-1\)chia hết cho cả \(5,7,11\).
Mà \(a\)nhỏ nhất nên \(2a-1=BCNN\left(5,7,11\right)=385\).
\(\Leftrightarrow a=193\).
ta có: a=5k+3;a=7k+4,a=11k+6
suy ra: 2a-1 e BCNN(5,7,11)
tìm được a=193