Cho hàm số \(f:\left[a;b\right]\rightarrow\left[a;b\right]\) liên tục trên \(\left[a,b\right]\) với \(a< b\) thỏa mãn \(\left|f\left(\alpha\right)-f\left(\beta\right)\right|< \left|\alpha-\beta\right|\), \(\forall\alpha,\beta\in\left[a;b\right]\) phân biệt. Chứng minh rằng \(\exists!\gamma\in\left[a;b\right]:f\left(\gamma\right)=\gamma\)
(Ở đây kí hiệu \(\exists!\) nghĩa là tồn tại duy nhất)
ối giời ơi cái j vậy
Khó thế em mới học lớp 5