Cho n thuộc N , n>2. Chứng minh n! -1 có ít nhất 1 ước nguyên tố > n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
chúng ta đều biết số nguyên tố là số không chia hết cho bât kỳ số nào trừ 1 và chính số đó.
từ đó ta có công thức tạo số nguyên tố như sau: tích tất cả các số nguyên tố đã biết cộng một (1) thì sẽ cho ta một số nguyên tố mới.
và nếu ta lặp lại thuật toán trên vô số lần ( với mỗi lần ta thêm số nguyên tố mới vào) ta sẽ có vô số số nguyên tố
Gọi a = n! - 1. Do n > 2 nên a >1.
Mọi số tự nhiên lớn hơn 1 đều có ít nhất một ước nguyên tố.
Gọi p là ước nguyên tố của a. Ta sẽ chứng minh rằng p > n.
Thậy vậy, giả sử p \(\le\) n thì tích 1.2.3...n chia hết cho p, ta có n! chia hết cho p, mà a chia hết cho p nên 1 nên 1 chia hết cho p, vô lý.
Vậy n! - 1 có ít nhất 1 ước nguyên tố lớn hơn n.
1/ Xét n=0: Dãy có 4 SNT: 2,3,5,7
Xét n=1: Dãy có 5 SNT: 2,3,5,7,11
Xét n=2: Dãy có 4 SNT: 3,5,7,11
Xét n>2: Dãy có 5 số chẵn lớn hơn 2 và ít nhất 1 số lẻ chia hết cho 3 và lớn hơn 3 --> chỉ còn nhiều nhất 4 SNT
Vậy n=1 thỏa đề.
2/ Xét n>5:
Dãy có 15 số chẵn lớn hơn 2 --> hợp số
15 số còn lại là 15 số lẻ liên tiếp nên có ít nhất 5 số chia hết cho 3 và lớn hơn 3 --> hợp số
10 số lẻ còn lại có ít nhất 2 số chia hết cho 5 và tất nhiên lớn hơn 5 ---> hợp số
Vậy còn nhiều nhất 8 SNT trong dãy trên.
Xét n=0: Dãy có 4 SNT: 2,3,5,7
Xét n=1: Dãy có 5 SNT: 2,3,5,7,11
Xét n=2: Dãy có 4 SNT: 3,5,7,11
Xét n>2: Dãy có 5 số chẵn lớn hơn 2 và ít nhất 1 số lẻ chia hết cho 3 và lớn hơn 3 => chỉ còn nhiều nhất 4 SNT
Vậy n=1 thỏa mãn đề bài
Ta có n > 2
Suy ra n! = 1.2. ... .n
Ta thấy 1.2. ... .n là số chẵn
Do đó 1.2. ... .n - 1 là số lẻ
Mà số lẻ sẽ là số nguyên tố hoặc hợp số
TH1 : 1.2. ... n là số nguyên tố
Ta có n > 2
Nên n = 3 là bé nhất
Với n = 3 thì 1.2. ... . n - 1 = 1.2.3 -1 = 6 -1 = 5
Mà ước của 5 là 1 ; 5
Mà 5 là số nguyên tố lớn hơn 2 nên 5 có 1 ước lớn hơn và đối với các số nguyên tố lớn hơn 5 luôn có một ước lớn hơn 2 là chính nó
Do đó đối với các trường hợp n > 3 sẽ luôn được n! -1 có ít nhất 1 ước nguyên tố lớn hơn
TH2 1.2. ... .n là hợp số
Ta thấy 1 hợp số lẻ ít nhất có 1 ước nguyên tố
Ở trường hợp trên ta đã nói được 1.2. ... .n - 1 lớn hơn hoặc bằng 5
Các hợp số lẻ lớn hơn hoặc bằng là 9 ; 15 ; 21 ;...
Ta thấy các hợp số trên có ước nguyên tố bé nhất là từ 3 trở lên
Mà 3 lá số nguyên tố lớn hơn 2
Do đó 1.2. ... .n - 1 là các hợp số lẻ có các ước nguyên tố lớn hơn 2
Vậy n! -1 ít nhất có 1 ước nguyên tố lớn hơn 2 với n thuộc N và n > 2