K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

10 = 5 . 2

18 = 32 . 2

24 = 23 . 3

BCNN = 360

có 360 = { 0 ; 360 ; 720 ; 1080 ; .... }

23 tháng 11 2016

đố choi hay thiet vay

2 tháng 7 2023

`8)` 

`a)` `->` ta được BCNN `(7;9;6)=126` 

`->` từ đó ta có được BC `(7;9;6)={0;126;252;...}`

`b)` `->` ta được BCNN `(8;12;15)=120`

`->` từ đó ta được BC `(8;12;15)={0;120;240;...}` 

`9)`

`a)->` BCNN `(15;18)=90` 

`e)->` BCNN`(33;44;55)=660`

`b)->` BCNN`(8;18;30)=360`

`f)->` BCNN`(10;12)=60`

`c)->` BCNN `(4;14;26)=364`

`g)->` BCNN `(24;10)=210`

`d)->` BCNN `(6;8;10)=120`

2 tháng 7 2023

2 bài này khá dài khi giải ra nên mik chỉ giảng cách tính thôi:

Bước 1: Phân tích từng số ra tích các thừa số nguyên tố.

Bước 2: Tìm BCNN bằng cách nhân các thừa số nguyên tố với nhau với số mũ lớn nhất (nếu có chung)

22 tháng 11 2017

1)a chia hết cho b thì b là ước của a

 a chia hết cho b thì b là bội của a. 

2)Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …

3)Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.

4)Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.

5)Ước chung của hai hay nhiều số là ước của tất cả các số đó.

6) Bước 1: Phân tích mỗi số ra thừa số nguyên tố.

- Bước 2: Chọn ra các thừa số nguyên tố chung.

- Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.

7)ƯCLN của hai hay nhiều số là số lơn nhất trong tập hợp ước chung

9)Bội chung của hai hay nhiều số là bội của tất cả các số đó.

10

Bài 18: Bội chung nhỏ nhất

22 tháng 11 2017

1)a chia hết cho b thì b là ước của a

 a chia hết cho b thì b là bội của a. 

2)Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …

3)Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.

4)Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.

5)Ước chung của hai hay nhiều số là ước của tất cả các số đó.

6) Bước 1: Phân tích mỗi số ra thừa số nguyên tố.

- Bước 2: Chọn ra các thừa số nguyên tố chung.

- Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.

7)ƯCLN của hai hay nhiều số là số lơn nhất trong tập hợp ước chung

9)Bội chung của hai hay nhiều số là bội của tất cả các số đó.

10

Bài 18: Bội chung nhỏ nhất

15 tháng 2 2017

16 tháng 10 2018

a, BCNN(210;280) = 840 => BC(210;280) = 840k (k ∈ N)

b, BCNN(105;135) = 945 => BC(105;135) = 945k (kN)

c, BCNN(24;36) = 72 => BC(24;36) = 72k (kN)

d, BCNN(48;80;72) = 720 => BC(48;80;72) = 720k (kN)

e, BCNN(42;55;91) = 30030 => BC(42;55;91) = 30030k (kN)

f, BCNN(12;36;102) = 612 => BC(12;36;102) = 612k (kN)

16 tháng 12 2021

tham khảo

Bội chung nhỏ nhất của 101218 và 5 là 180.

16 tháng 12 2021

Bội chung nhỏ nhất của 10, 12, 18 và 5 là 180.

31 tháng 10 2023

sos

31 tháng 10 2023

sos

25 tháng 1 2019

28 tháng 3 2017

a, Ta có: 8 = 2 3 ; 10 = 2.5

BCNN(8; 10) =  2 3 .5 = 40

BC(8; 10) =B(40)= { 0; 40; 80; 120;………}

b, Ta có: 6 =2.3; 24=  2 3 . 3; 40 =  2 3 .5

BCNN( 6; 24; 40) =  2 3 .3. 5= 120

BC( 6; 24; 40)= B(120) ={ 0; 120; 240; 360….}

c, Ta có: 8 = 2 3 ; 15 = 3.5; 20 =  2 2 .5

BCNN(8; 15;20) =  2 3 .3.5 = 120

BC( 8; 15; 20)= B(120) ={ 0; 120; 240; 360….}

d, Ta có: 30 = 2.3.5; 45 =  3 2 .5

BCNN(30; 45) = 2. 3 2 .5 = 90

BC (30; 45)  và nhỏ hơn 500 = { 0; 90; 180; 270; 360;480}

e, Ta có: a nhỏ nhất khác 0biết rằng a ⋮ 15 và a18

=> a = BCNN (15; 18)

Có: 15 = 3.5; 18 = 2. 3 2

BCNN(15; 18) = 2. 3 2 .5 = 90

Vậy a = 90

f, Ta có: 63 =  3 2 .7; 35 = 5.7; 105 = 3.5.7

BCNN(63; 35; 105) =  3 2 .5.7 = 315

BC(63; 35; 105) và nhỏ hơn 1000 = { 0; 315; 630; 945}

17 tháng 10 2023

a, Ta có: 8 = 2 3 ; 10 = 2.5

BCNN(8; 10) =  2 3 .5 = 40

BC(8; 10) =B(40)= { 0; 40; 80; 120;………}

b, Ta có: 6 =2.3; 24=  2 3 . 3; 40 =  2 3 .5

BCNN( 6; 24; 40) =  2 3 .3. 5= 120

BC( 6; 24; 40)= B(120) ={ 0; 120; 240; 360….}

c, Ta có: 8 = 2 3 ; 15 = 3.5; 20 =  2 2 .5

BCNN(8; 15;20) =  2 3 .3.5 = 120

BC( 8; 15; 20)= B(120) ={ 0; 120; 240; 360….}

d, Ta có: 30 = 2.3.5; 45 =  3 2 .5

BCNN(30; 45) = 2. 3 2 .5 = 90

BC (30; 45)  và nhỏ hơn 500 = { 0; 90; 180; 270; 360;480}

e, Ta có: a nhỏ nhất khác 0biết rằng a ⋮ 15 và a ⋮ 18

=> a = BCNN (15; 18)

Có: 15 = 3.5; 18 = 2. 3 2

BCNN(15; 18) = 2. 3 2 .5 = 90

Vậy a = 90

f, Ta có: 63 =  3 2 .7; 35 = 5.7; 105 = 3.5.7

BCNN(63; 35; 105) =  3 2 .5.7 = 315

BC(63; 35; 105) và nhỏ hơn 1000 = { 0; 315; 630; 945}