Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: (d): x=-2-2t và y=1+2t nên (d) có VTCP là (-2;2)=(-1;1) và đi qua B(-2;1)
=>(d') có VTPT là (-1;1)
Phương trình (d') là;
-1(x-3)+1(y-1)=0
=>-x+3+y-1=0
=>-x+y+2=0
2: (d) có VTCP là (-1;1)
=>VTPT là (1;1)
Phương trình (d) là:
1(x+2)+1(y-1)=0
=>x+y+1=0
Tọa độ H là;
x+y+1=0 và -x+y+2=0
=>x=1/2 và y=-3/2
Gọi \(M\left(2+2t;3+t\right)\)
M có tọa độ nguyên \(\Leftrightarrow t\) nguyên
\(\overrightarrow{AM}=\left(2+2t;2+t\right)\) \(\Rightarrow AM=\sqrt{\left(2+2t\right)^2+\left(2+t\right)^2}=5\)
\(\Leftrightarrow5t^2+12t-17=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{17}{5}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow M\left(4;4\right)\)
Vì $M$ nằm trên đường thẳng $d$ nên gọi tọa độ điểm $M$ là \((1-2t, -2+4t)\)
Khi đó:
\(AM=\sqrt{(1-2t-2)^2+(-2+4t+5)^2}=\sqrt{(-1-2t)^2+(4t+3)^2}\)
\(=\sqrt{20t^2+28t+10}=\sqrt{20(t+\frac{7}{10})^2+\frac{1}{5}}\)
\(\geq \sqrt{\frac{1}{5}}\) khi và chỉ khi \(t+\frac{7}{10}=0\Leftrightarrow t=-\frac{7}{10}\)
Vậy $AM$ ngắn nhất khi \(t=-\frac{7}{10}\Rightarrow M=(\frac{12}{5}, \frac{-24}{5})\)
P/s: Mình không hiểu đề bài cho dữ kiện B, C làm gì? k là số nào?
vì bài có câu a,b,c,d mà mấy câu đó mình biết làm rồi, còn câu này mình k chắc chắn lắm nên đăng lên. Cảm ơn bạn nha.
\(\left\{{}\begin{matrix}x=2+t\\y=1-3t\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x=6+3t\\y=1-3t\end{matrix}\right.\) \(\Rightarrow3x+y=7\Rightarrow3x+y-7=0\)
Vậy (d) có pt tổng quát là: \(3x+y-7=0\)
A và B nằm cùng phía đối với d khi và chỉ khi:
\(\left(3.1+2-7\right)\left(3.\left(-2\right)+m-7\right)>0\)
\(\Leftrightarrow-2\left(m-13\right)>0\)
\(\Rightarrow m< 13\)
\(M\in d\Rightarrow M\left(3-2t;1+3t\right)\)
\(\Rightarrow\)\(\overrightarrow{AM}=\left(-1-2t;1+3t\right)\)
\(\Rightarrow AM=\sqrt{\left(-1-2t\right)^2+\left(1+3t\right)^2}=5\)
\(\Leftrightarrow13t^2+10t-23=0\Rightarrow\left[{}\begin{matrix}t=1\\t=\dfrac{-23}{13}\end{matrix}\right.\)
\(+t=1\Rightarrow M\left(1;4\right)\)
\(+t=\dfrac{-23}{13}\Rightarrow M=\left(\dfrac{85}{13};\dfrac{-56}{13}\right)\)
vậy có 2 điểm M cần tìm.
Gọi giao điểm là A, thay tọa độ tham số d1 vào d2:
\(t-2\left(2-t\right)+m=0\Leftrightarrow3t+m-4=0\Rightarrow t=\dfrac{-m+4}{3}\)
\(\Rightarrow A\left(\dfrac{-m+4}{3};\dfrac{m+2}{3}\right)\)
\(\Rightarrow OA=\sqrt{\left(\dfrac{-m+4}{3}\right)^2+\left(\dfrac{m+2}{3}\right)^2}=2\)
\(\Leftrightarrow m^2-2m-8=0\Rightarrow\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)
b. Bạn không đưa 4 đáp án thì không ai trả lời được câu hỏi này. Có vô số đường thẳng cách đều 2 điểm, chia làm 2 loại: các đường thẳng song song với AB và các đường thẳng đi qua trung điểm của AB
c. Tương tự câu b, do 3 điểm ABC thẳng hàng nên có vô số đường thẳng thỏa mãn, là các đường thẳng song song với AB
b)
A. x-y+2=0
B. x+2y=0
C.2x-2y+10=0
D. x-y+100=0
c)
A. x-3y+4=0
B. -x+y+10=0
C. x+y=0
D. 5x-y+1=0
Mik đang bận nên chỉ có HD thôi ạ :
-Viết p/t đ/t d ; biểu diễn tọa độ P theo d
- Tính MN ; NP ; MP
- ADCT : \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) ( p = a + b + c / 2 )
GPT tìm tọa độ P
\(\overrightarrow{NM}=\left(3;3\right)\Rightarrow MN=\sqrt{3^2+3^2}=3\sqrt{2}\) và đường thẳng MN nhận (1;-1) là 1 vtpt
Phương trình MN:
\(1\left(x-2\right)-1\left(y-2\right)=0\Leftrightarrow x-y=0\)
Do P thuộc (d) nên tọa độ có dạng: \(\left(-8+2t;t\right)\)
\(\Rightarrow d\left(P;MN\right)=\dfrac{\left|-8+2t-t\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\left|t-8\right|}{\sqrt{2}}\)
\(S_{MNP}=\dfrac{1}{2}.d\left(P;MN\right).MN=18\)
\(\Leftrightarrow\dfrac{1}{2}.\dfrac{\left|t-8\right|}{\sqrt{2}}.3\sqrt{2}=18\)
\(\Rightarrow\left|t-8\right|=12\Rightarrow\left[{}\begin{matrix}t=20\\t=-4\end{matrix}\right.\) (loại \(t=20\) do P có tung độ âm)
\(\Rightarrow P\left(-16;-4\right)\Rightarrow2a-13b=20\)