K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2016

Ta có:3/5+3/7-3/11=3.(1/5+1/7-1/11)

4/5+4/7-4/11=4.(1/5+1/7-1/11)

=>M=[3.(1/5+1/7-1/11)]/[4.(1/5+1/7-1/11)]=3/4

2 tháng 5 2016

M = \(\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}=\frac{3\left(\frac{1}{5}+\frac{3}{7}-\frac{3}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}=\frac{3}{4}\)

15 tháng 4 2020

Đây là lớp 8 nha các b giúp mk với

Do mk viết nhầm

a: \(A=\dfrac{-3}{8}\left(16+\dfrac{8}{17}+7+\dfrac{9}{17}\right)=\dfrac{-3}{8}\cdot24=-9\)

b: \(B=\dfrac{\dfrac{3}{5}-\dfrac{3}{9}+\dfrac{3}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}=\dfrac{3}{7}\)

 

NV
12 tháng 7 2020

- Xét \(sin\frac{x}{5}=0\Rightarrow C=...\)

- Với \(sin\frac{x}{5}\ne0\)

\(C.sin\frac{x}{5}=sin\frac{x}{5}.cos\frac{x}{5}.cos\frac{2x}{5}cos\frac{4x}{5}cos\frac{8x}{5}\)

\(=\frac{1}{2}sin\frac{2x}{5}cos\frac{2x}{5}cos\frac{4x}{5}cos\frac{8x}{5}\)

\(=\frac{1}{4}sin\frac{4x}{5}cos\frac{4x}{5}cos\frac{8x}{5}=\frac{1}{8}sin\frac{8x}{5}cos\frac{8x}{5}\)

\(=\frac{1}{16}sin\frac{16x}{5}\Rightarrow C=\frac{sin\frac{16x}{5}}{16.sin\frac{x}{5}}\)

\(D=sin\frac{x}{7}+sin\frac{5x}{7}+2sin\frac{3x}{7}\)

\(=2sin\frac{3x}{7}cos\frac{2x}{7}+2sin\frac{3x}{7}\)

\(=2sin\frac{3x}{7}\left(cos\frac{2x}{7}+1\right)=4cos^2\frac{x}{7}.sin\frac{3x}{7}\)

NV
12 tháng 7 2020

\(A=cos\frac{\pi}{7}cos\frac{3\pi}{7}cos\frac{5\pi}{7}=cos\frac{\pi}{7}cos\frac{4\pi}{7}cos\frac{2\pi}{7}\)

\(\Rightarrow A.sin\frac{\pi}{7}=sin\frac{\pi}{7}.cos\frac{\pi}{7}.cos\frac{2\pi}{7}cos\frac{4\pi}{7}\)

\(=\frac{1}{2}sin\frac{2\pi}{7}cos\frac{2\pi}{7}cos\frac{4\pi}{7}=\frac{1}{4}sin\frac{4\pi}{7}cos\frac{4\pi}{7}\)

\(=\frac{1}{8}sin\frac{8\pi}{7}=\frac{1}{8}sin\left(\pi+\frac{\pi}{7}\right)=-\frac{1}{8}sin\frac{\pi}{7}\)

\(\Rightarrow A=-\frac{1}{8}\)

\(B=sin6.cos48.cos24.cos12\)

\(B.cos6=sin6.cos6.cos12.cos24.cos48\)

\(=\frac{1}{2}sin12.cos12.cos24.cos48=\frac{1}{4}sin24.cos24.cos48\)

\(=\frac{1}{8}sin48.cos48=\frac{1}{16}sin96\)

\(=\frac{1}{16}sin\left(90+6\right)=\frac{1}{16}cos6\Rightarrow B=\frac{1}{16}\)