Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ :
\(B=\frac{2010+2011+2012}{2011+2012+2013}\)
\(B=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
VÌ : \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
=> A > B
VẬY , A > B
Mình tự hỏi. sao banh biết rồi còn đăng lên làm gì??????????
Ta có \(B=\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2013}+\frac{2012}{2013}=\frac{2011+2012}{2013}\)
Lại có: \(\frac{2011+2012}{2013}>\frac{2011+2012}{2012+2013}\) ( ngoặc 2 dòng này lại nhé dòng này và dòng trên)
\(\Rightarrow B>A\)
\(\frac{2010}{2011}\)> \(\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}\)> \(\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}\)> \(\frac{2012}{2011+2012+2013}\)
=> \(\frac{2010}{2011}\)+ \(\frac{2011}{2012}\)+ \(\frac{2012}{2013}\)> \(\frac{2010+2011+2012}{2011+2012+2013}\)
=> P > Q
Áp dụng BĐT \(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}>\frac{a+b+c}{a+b+c}=1>\frac{a+b+c}{b+c+d}\).
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2010+2011+2012}>\frac{2010+2011+2012}{2011+2012+2013}\)mà 2010 + 2011 + 2012 < 2011+2012+2013 ,suy ra \(\frac{2010+2011+2012}{2011+2012+2013}< 1\))
\(\Rightarrow\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010+2011+2012}{2011+2012+2013}\)hay P > Q
Vậy P > Q
b) Áp dụng công thức BCNN (a, b) . UCLN (a,b) = a.b
\(\Rightarrow a.b=420.21=8820\)
Ta có:
\(ab=8820\)
\(a+21=b\Rightarrow b-a=21\)
Hai số cách nhau 21 mà có tích là 8820 là 84 , 105
Mà a + 21 = b suy ra a < b
Vậy a = 84 ; b = 105
a,-Cách khác:
-Ta có: \(\frac{2010+2011+2012}{2011+2012+2013}=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
-Mà: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\left(1\right)\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\left(2\right)\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\left(3\right)\)
\(\Rightarrow P>Q\)
ta có: \(\frac{2011}{2012}>\frac{2011}{2012+2013};\frac{2012}{2013}>\frac{2012}{2013+2012}.\)
\(\Rightarrow A>\frac{2011}{2012+2013}+\frac{2012}{2013+2012}=\frac{2011+2012}{2012+2013}=B\)
....
Ta có \(\frac{2011}{2012}>\frac{2011}{2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2012+2013}\)
CỘNG VẾ THEO VẾ,TA CÓ:
\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011+2012}{2012+2013}\)
\(\Rightarrow A>B\)
Vậy A>B
P = \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
Q = \(\frac{2010+2011+2012}{2011+2012+2013}\) = \(\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
Vì: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)
\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)
\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)
=> \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)
P > Q
Ta có
\(\frac{A^{2011}}{A^{2012}}=\frac{A^{2012}}{A^{2103}}=\frac{A}{A^2}\)
=> \(\frac{A^{2011}}{A^{2012}}+\frac{A^{2012}}{A^{2013}}=\frac{2A}{A^2}\)
\(\frac{A^{2011+2012}}{A^{2012+2013}}=\frac{A^{4023}}{A^{4025}}=\frac{1}{A^2}\)
=> \(\frac{A^{2011+2012}}{A^{2012+2013}}< \frac{A^{2011}}{A^{2012}}+\frac{A^{2012}}{A^{2013}}\)
Ta có : Q=2010/2011+2012+2013 + 2011/2011+2012+2013 +2012/2011+2012+2013
Đó là bước đầu còn phần sau bạn tự so sánh từng phân số của P và Q nhé, k cho mik!
a, \(\frac{2011}{2012}\)và \(\frac{2012}{2011}\)
Vì \(\frac{2011}{2012}\)có Tử số bé hơn Mẫu số nên phân số đó < 1 ; \(\frac{2012}{2011}\)có Tử số lớn hơn Mẫu số nên phân số đó > 1
=> \(\frac{2011}{2012}< \frac{2012}{2011}\)
b, \(\frac{2000}{2013}\)và \(\frac{2011}{2012}\)
Ta có:
\(\frac{2000}{2013}=\frac{2000}{2013}+\frac{13}{2013}\) ; \(\frac{2011}{2012}=\frac{2011}{2012}+\frac{1}{2012}\)
Ta thấy \(\frac{13}{2013}>\frac{1}{2012}\)
\(\Rightarrow\frac{2000}{2013}< \frac{2011}{2012}\)
a,2011/2012<2012/2011
b,2000/2013<2011/2012