Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q\left(x\right)=x^2-3x+2+4x-x^2=x+2\)
Cho \(Q\left(x\right)=0\)\(\Rightarrow x+2=0\)\(\Leftrightarrow x=-2\)
Vậy nghiệm của đa thức Q(x) là \(x=-2\)
Rút gọn P(x), ta được: P(x) = \(x^2-4\)
Có: P(x) = \(x^2-4=0\)
\(\Rightarrow x^2=4\)
\(\Rightarrow x\in\left\{-2;2\right\}\)
Vậy x = -2 hoặc x = 2 là nghiệm của đa thức P(x)
xét P(x) có nghiệm <=>P(x)=0
<=>4x2 - 2x - 3x2 - 5 + 2x + 1=0
<=>x2-4=0
<=>(x-2)(x+2)=0
<=>x-2=0 hoặc x+2=0
<=>x=2 hoặc -2
1)
f(x) = 3x - 6 = 3x - 3.2 = 3(x - 2) => nghiệm của f(x) là 2.
h(x) = -5x + 30 = -5x + (-5) . (-6) = -5(x - 6) => nghiệm của h(x) là 6.
g(x) = (x - 3)(16 - 4x) => nghiệm của g(x) là 3 hoặc 4.
k(x) = x2 - 81 = x2 - 92 = (x + 9)(x - 9) => nghiệm của k(x) là -9 hoặc 9.
m(x) = x2 + 7x - 8 = x2 - x + 8x - 8 = x(x - 1) + 8(x - 1) = (x + 8)(x - 1) => nghiệm của m(x) là -8 hoặc 1.
n(x) = 5x2 + 9x + 4 = 5x2 + 5x + 4x + 4 = 5x(x + 1) + 4(x + 1) = (5x + 4)(x + 1) => nghiệm của n(x) là \(-\frac{4}{5}\)hoặc -1.
A(x) = 3x2 - 12x = 3x2 - 3x . 4 = 3x(x - 4) => nghiệm của đa thức là 0 hoặc 4.
2) x2 + 4x + 5 = x2 + 2x + 2x + 4 + 1 = x(x + 2) + 2(x + 2) + 1 = (x + 2)(x + 2) + 1 = (x + 2)2 + 1 \(\ne0\) (đpcm)
3x - 6 = 0
3x = 6
x = 6 : 3
x = 2
Vậy x = 2 là nghiệm của đa thức f(x)
-5x + 30 = 0
-5x = -30
x = -30 : (-5)
x = 6
Vậy x = 6 là nghiệm của đa thức trên
(x - 3)(16 - 4x) = 0
- x - 3 = 0
x = 3
- 16 - 4x = 0
4x = 16
x = 16 : 4
x = 4
Vậy x = 3 và x = 4 là nghiệm của đa thức trên
x^2 - 81 = 0
x^2 = 81
x^2 = \(\left(\pm9\right)^2\)
x = \(\pm9\)
Vậy x = 9 và x = -9 là nghiệm của đa thức trên
x^2 + 7x - 8 = 0
x^2 - x + 8x - 8 = 0
x(x - 1) + 8(x - 1) = 0
(x + 8)(x - 1) = 0
- x + 8 = 0
x = -8
- x - 1 = 0
x = 1
Vậy x = -8 và x = 1 là nghiệm của đa thức trên
5x^2 + 9x + 4 = 0
5x^2 + 5x + 4x + 4 = 0
5x(x + 1) + 4(x + 1) = 0
(5x + 4)(x + 1) = 0
- 5x + 4 = 0
5x = -4
x = -4/5
- x + 1 = 0
x = -1
Vậy x = -4/5 và x = -1 là nghiệ của đa thức trên
Chúc bạn học tốt
Đặt `A(x)=0`
`<=>4x-2(3x-5)+2=0`
`<=>4x-6x+10+2=0`
`<=>12-2x=0`
`<=>12=2x`
`<=>x=6`
Vậy x=6 là nghiệm A(x)
Đặt A(x)=0
\(\Leftrightarrow4x-2\left(3x-5\right)+2=0\)
\(\Leftrightarrow4x-6x+10+2=0\)
\(\Leftrightarrow-2x=-12\)
hay x=6
ta có
4x2 - 3x \(\ge\)0
=> \(4x^2-3x+7\ge7\)
=> vậy phương trình vô nghiệm
hok tốt .
Bài này áp dụng hằng đẳng thức lớp 8 a2-2ab+b2=(a-b)2
\(M\left(x\right)=4x^2-3x+7\)
\(M\left(x\right)=3x^2+\text{[}x^2-2.1,5x+\left(1,5^2\right)\text{]+4,75}\)
\(M\left(x\right)=3x^2+\left(x-1,5\right)^2+4,75\)
Ta có: \(\orbr{\begin{cases}3x^2\ge0\forall x\\\left(x-1,5\right)^2\ge0\forall x\end{cases}\Rightarrow3x^2+\left(x-1,5\right)^2+4,75\ge4,75\forall x}\)
\(\Rightarrow3x^2+\left(x-1,5\right)^2+4,75>0\)
\(\Rightarrow M\left(x\right)>0\)
\(\Rightarrow\text{đ}a th\text{ức} M\left(x\right)\)vô nghiệm
Vậy đa thức M(x) vô nghiệm
a)ta có:x^2 - 4x=0
<=>x(x-4)=0
Th1:x=0
Th2:x-4=0
=>x=4
vậy đa thức đã cho có nghiệm x=0 hoặc 4
b)ta có:| 3x + 5 | =0
3x+5=0
=>3x=-5
=>x=\(\frac{-5}{3}\)