K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2016

Tinh 2A, roi lay 2A-A se chung to dc

8 tháng 5 2017

Ta có 

\(\frac{1}{4^2}< \frac{1}{2.4}\)

\(\frac{1}{6^2}< \frac{1}{4.6}\)

..................

\(\frac{1}{100^2}< \frac{1}{98.100}\)

\(\Rightarrow\)\(N< \frac{1}{2.4}+\frac{1}{4.6}+....+\frac{1}{98.100}\)

Ta có công thức:                            \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)

Dựa vào công thức ta có:

\(N< \frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{100}\right)\)

\(N< \frac{1}{2}.\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{1}{2}.\frac{49}{100}=\frac{49}{200}< \frac{1}{4}\Rightarrow dpcm\)

Ai thấy đúng thì ủng hộ nha !!!

8 tháng 5 2017

\(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{100^2}\)

\(2^2N=\frac{2^2}{4^2}+\frac{2^2}{6^2}+\frac{2^2}{8^2}+...+\frac{2^2}{100^2}\)

\(2^2N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}< 1\)

\(\Rightarrow2^2N< 1\)

\(\Rightarrow N< \frac{1}{2^2}=\frac{1}{4}\)

20 tháng 3 2016

nhanh giúp mình

30 tháng 3 2017

giup voi,làm ơn

18 tháng 4 2018

Chứng tỏ\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+.........+\frac{1}{100^2}\) <\(\frac{1}{2}\) 

Giờ tớ đặt cụm cần chứng minh là A

Ta có:

\(\frac{1}{3^2}< \frac{1}{2.3}\) 

\(\frac{1}{4^2}< \frac{1}{3.4}\) 

\(\frac{1}{5^2}< \frac{1}{4.5}\) 

........................

\(\frac{1}{100^2}< \frac{1}{99.100}\) 

=>\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+..........+\frac{1}{100^2}\) <\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.........+\frac{1}{99.100}\) 

=> A < \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}+.......+\frac{1}{99}-\frac{1}{100}\) 

=> A <\(\frac{1}{2}-\frac{1}{100}\)

=> A<\(\frac{50}{100}-\frac{1}{100}\)

=> A<\(\frac{49}{100}\) <\(\frac{50}{100}\) =\(\frac{1}{2}\) 

=> A<\(\frac{1}{2}\)

6 tháng 4 2018

\(A< \frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{198.199}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{198}-\frac{1}{199}\)

=> \(A< \frac{1}{99}-\frac{1}{199}< \frac{1}{99}\)

Lại có: 

\(A>\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{199.200}=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{199}-\frac{1}{200}\)

=> \(A>\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\)

=> 1/100 < A < 1/99