Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)= \(\left(1+\frac{1}{3}+....+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{99}+\frac{1}{100}\right)\)\(-2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}\right)\)
\(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}=-\frac{1}{2}\)
Ta có : \(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B=\frac{2015}{51}+\frac{2015}{52}+...+\frac{2015}{100}\)
\(=2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)
\(\Rightarrow\) \(\frac{B}{A}=\frac{2015\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=2015\)
\(\Rightarrow\) \(B⋮A\)
\(\frac{51.52....100}{2^{50}}=\frac{\left(51.52....100\right)\left(1.2.3...50\right)}{2^{50}.\left(1.2.3...50\right)}=\frac{1.2.3....100}{\left(1.2\right)\left(2.2\right).\left(2.3\right)...\left(2.50\right)}=\frac{1.2.3...100}{2.4.6...100}=1.3...99\) (đpcm)
P/s: . là dấu nhân
T_T